457 research outputs found

    Role of plasma-induced defects in the generation of 1/f noise in graphene

    Get PDF
    It has already been reported that 1/f noise in graphene can be dominated by fluctuations of charge carrier mobility. We show here that the increasing damage induced by oxygen plasma on graphene samples result in two trends: at low doses, the magnitude of the 1/f noise increases with the dose; and at high doses, it decreases with the dose. This behaviour is interpreted in the framework of 1/f noise generated by carrier mobility fluctuations where the concentration of mobility fluctuation centers and the mean free path of the carriers are competing factors. Published by AIP Publishing

    microRNAs and Inflammatory Immune Response in SARS-CoV-2 Infection: A Narrative Review

    Get PDF
    The current SARS-CoV-2 pandemic has emerged as an international challenge with strong medical and socioeconomic impact. The spectrum of clinical manifestations of SARS-CoV-2 is wide, covering asymptomatic or mild cases up to severe and life-threatening complications. Critical courses of SARS-CoV-2 infection are thought to be driven by the so-called “cytokine storm”, derived from an excessive immune response that induces the release of proinflammatory cytokines and chemokines. In recent years, non-coding RNAs (ncRNAs) emerged as potential diagnostic and therapeutic biomarkers in both inflammatory and infectious diseases. Therefore, the identification of SARS-CoV-2 miRNAs and host miRNAs is an important research topic, investigating the host–virus crosstalk in COVID-19 infection, trying to answer the pressing question of whether miRNA-based therapeutics can be employed to tackle SARS-CoV-2 complications. In this review, we aimed to directly address ncRNA role in SARS-CoV-2-immune system crosstalk upon COVID-19 infection, particularly focusing on inflammatory pathways and cytokine storm syndromes

    Molekularna karakterizacija starog stabla masline Olea europea na Brijunima analizom SSR markera

    Get PDF
    Investigations were carried out on molecular characterization of a 1600 years old olive tree located on the Brijuni islands (Croatia) by SSR markers analysis. Measurements of fruits and leaves features were carried out on the old tree Brijunka and on the standard Istrian cultivar Buga (Buža). Measurement data on fruits and leaves were calculated statistically.Istraživanja obuhvaćaju molekularnu karakterizaciju 1600 godina starog stabla masline Olea europea na Brijunima analizom SSR markera. Provedene su izmjere svojstava ploda i lišća starog stabla masline Brijunke i standardne istarske sorte Buga (Buža). Rezultati istraživanja obrađeni su varijacijsko-statistički

    A Low Cost Programmable Hardware for Online Spectroscopy of Lithium Batteries

    Get PDF

    Building damage scenarios based on exploitation of Housner Intensity derived from finite faults ground motion simulations

    Get PDF
    In this paper earthquake damage scenarios for residential buildings (about 4200 units) in Potenza (Southern Italy) have been estimate adopting a probabilistic approach that involves complex source models, site effects, building vulnerability assessment and damage estimation through Damage Probability Matrices (DPMs). The studied area experienced several destructive earthquakes in historical and recent times. Several causative faults of single seismic events, with magnitude up to 7, are known to be close to the town. A seismic hazard approach based on finite faults ground motion simulation techniques has been used to identify the sources producing the maximum expected ground motion at Potenza and to generate a set of ground motion time histories to be used for building damage scenarios. Additionally, site effects, evaluated in the framework of the DPC-INGV S3 project through amplification factors of Housner intensity (IH), have been combined with the bedrock values provided by hazard assessment. Furthermore, a new relationship between IH and macroseismic intensity in terms of EMS98 has been developed. This relationship has been used to convert the Probability Density Functions (PDFs) for IH obtained from synthetic seismograms and convolved by the site effects coefficients into PDFs for EMS98 intensity. Finally, the DPMs approach has been applied to estimate the damage levels of the residential buildings in the urban area of Potenza

    Building damage scenarios based on exploitation of Housner intensity derived from finite faults ground motion simulations

    Get PDF
    In this paper earthquake damage scenarios for residential buildings (about 4200 units) in Potenza (Southern Italy) have been estimated adopting a novel probabilistic approach that involves complex source models, site effects, building vulnerability assessment and damage estimation through Damage Probability Matrices. Several causative faults of single seismic events, with magnitude up to 7, are known to be close to the town. A seismic hazard approach based on finite faults ground motion simulation techniques has been used to identify the sources producing the maximum expected ground motion at Potenza and to generate a set of ground motion time histories to be adopted for building damage scenarios. Additionally, site effects, evaluated in a previouswork through amplification factors of Housner intensity, have been combined with the bedrock values provided by hazard assessment. Furthermore, a new relationship between Housner and EMS-98 macroseismic intensity has been developed. This relationship has been used to convert the probability mass functions of Housner intensity obtained from synthetic seismograms amplified by the site effects coefficients into probability mass function of EMS-98 intensity. Finally, the Damage Probability Matrices have been applied to estimate the damage levels of the residential buildings located in the urban area of Potenza. The proposed methodology returns the full probabilistic distribution of expected damage, thus avoiding average damage index or uncertainties expressed in term of dispersion indexes
    corecore