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ABSTRACT 

The capability to assess and monitor the state of health (SOH) of lithium-based cells is a highly demanded feature for 

advanced battery management systems. Due to the existing relation between SOH and internal impedance, 

electrochemical impedance spectroscopy (EIS) methods are adopted for SOH diagnosis.  Nevertheless, accurate EIS 

tests demand expensive facilities, long time test procedures, and algorithms with high-computational efforts, which 

makes them almost unsuitable for on-board systems. This paper presents a new diagnostic method aimed at detecting 

battery SOH using fast impedance measurements. Key factor is the application of a broadband current signal excitation 

on the battery; for the application here presented, a pseudo-random binary sequence (PRBS) excitation is adopted. To 

demonstrate the functionalities of a prototype testbed, several cells of the same manufacturer but presenting different 

SOHs, due to their past load history, have been subjected to the EIS test, acquiring voltage response under imposed 

excitation. Finally, test results have been processed: the key step being the clustering of impedance measurements 

(represented in Nyquist diagram) in different rectangular areas, which are related to actual SOH. The performed 

experimental test results showed the possibility to determine frequency points in which the impedance measurements 

dramatically change due to different cell SOH; as a consequence, these peculiar frequencies can be adopted as reference 

for cluster separation. According to the results here presented, the proposed method is sufficiently accurate and is a 

promising solution for real-time diagnostic of battery health thanks to its simplicity and speed.   

Keywords: Lithium-ion battery; second life; end of life; state of health; electrochemical impedance spectroscopy; 

PRBS; ordinary coherence; electric vehicle.    
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NOMENCLATURE 

EIS Electrochemical impedance spectroscopy 

LIB Lithium battery 

EV Electric vehicle 

HEV Hybrid electric vehicle 

ICE Internal combustion engine 

EOL End of life 

SOL State of life 

SOH State of health 

SOC State of charge 

C Battery nominal capacity (in Ah) 

𝑧[𝑛] Impulse response 

𝑍(𝑘) Frequency response 

𝑘 Normalized frequency 

𝑁 Total harmonics number 

𝑅0 Series resistance used in sample impedance circuit 

𝑅1 RC resistance used in sample impedance circuit 

𝐶1 RC capacitance used in sample impedance circuit 

𝑅𝑝 Parasitic resistance in capacitance 𝐶1 

𝑅𝑖𝑛𝑡 Internal resistance 
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𝑅𝑆𝐸𝐼 Solid electrolyte interphase resistance 

𝑅𝐶𝑇 Charge-transfer resistance 

𝐶𝐷𝐿 Double-layer capacitance 

SEI Solid electrolyte interphase 

𝛷𝑥𝑥 Power spectral density of signal 𝑥 

𝛷𝑥𝑦 Cross power spectral density of I/O signals 𝑥 & 𝑦 

𝛾𝑥𝑦
2  Ordinary coherence of I/O signals 𝑥 & 𝑦 

PRS Pseudo-random sequence 

PRBS Pseudo-random binary sequence 

LTI Linear and time-invariant 

DFT Discrete Fourier transform 

BIBO Bounded-input bounded-output 

PSD Power spectral density 

CPSD Cross power spectral density 

KK Kramers Kronig 

SNR Signal-to-noise ratio 

NMC Nickel-Manganese-Cobalt 

CC Constant current 

CV Constant voltage 

𝑚 Number of PRBS registers 

𝑡 Step time 
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𝑎𝑖 PRBS gain factors 

rem(𝑥,2) Modulo-2 operation 

M PRBS sample period 

𝑓𝑐 Clock frequency 

𝑓𝑠 Sampling frequency 

𝐿𝑓 Number of disjointed frames 

𝑁𝑓 Samples length of frames 

𝜎𝑟𝑒𝑎𝑙,𝑑𝑎𝑡𝑎𝑠𝑒𝑡 Standard deviation of real impedance dataset 

𝜎𝑖𝑚𝑎𝑔,𝑑𝑎𝑡𝑎𝑠𝑒𝑡 Standard deviation of imaginary impedance dataset 

𝜎𝑟𝑒𝑎𝑙,𝑖𝑛𝑠 Real impedance measurement uncertainty of the 

instrument 

𝜎𝑖𝑚𝑎𝑔,𝑖𝑛𝑠 Imaginary impedance measurement uncertainty of the 

instrument 

𝐺0 Gain factor 

𝑍 Impedance 
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I. INTRODUCTION 

Lithium batteries (LIBs), with their high energy and power density, long cycle life, are widely used as energy storage 

units for electric and hybrid vehicles (EVs, HEVs). Currently, the automotive market is still dominated by vehicles 

powered with an internal combustion engine (ICE). However, the current market and technology trends are leading to 

the rapid growth of the diffusion of EVs and HEVs. The market share of ICE vehicles is predicted to fall from 99% in 

2015 to 68% in 2030 [1]. Research works [2][3] agree on the growth estimation of LIB cells demand, driven 

predominantly but not exclusively by growth of automotive sector. According to [1] the limit of 100 $/kWh will be 

reached in 2025-2030 for several lithium-based batteries. Currently, there are several solutions to overcome this limit, 

e.g. developing battery chemistry with less costly new materials, adopting recycled materials (if available), increasing 

energy density per element, etc.  The reuse of EV/HEV LIBs after their end-of-life (EOL), giving them a second life, 

has been considered one of the promising solutions to satisfy the battery demand of various sectors by extending use 

phase. Automotive LIBs are considered in EOL if its current capacity is at 85-80% of nominal capacity [4]-[8]. Despite 

a noticeable decrease in battery performance in EOL, as depicted in [4], second-life batteries are still expected to be 

capable of storing, delivering substantial energy and to meet the requirements of less-demanding applications, where 

reduced performances are still acceptable. Today, car manufacturers can also consider the second use option as an 

opportunity to expand their portfolio and enter in the stationary battery market.  

In cooperation with utility companies, they are launching several pilot projects of battery second-life. The summary 

of these projects is presented in [5]. Therefore, several studies are focused on this topic: first investigations of the 

second-life battery from an economic, technical, and environmental viability perspective are carried out in [6][8]. A 

depth analysis of the aging evolution and impact of the battery in automotive applications, considering the impact on 

SOH of fast charging events or temperature conditions, is shown in [4][7]. Even if second life topics are stimulating a 

broad literature due to the need for diagnostics, standardization, and implementation in different contexts, diagnostics 

methods are a key need not only for such a life prolongation proposal but also to guarantee efficiency, safety and 

reliability of vehicle during first-life use. Amongst other reasons, it can be noted that accurate SOH assessment also 

improves SOC estimation, thus providing useful information for the vehicle user [9]; it has been demonstrated, also, 
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that certain aged cells can react in a worse to abuse evens in comparison with fresh ones [10], thus making diagnostics 

a matter of overall vehicle safety. 

A. Literature review and contribution of the work 

Hence, the battery state of health needs to be continuously monitored. Battery state of health (SOH), as defined in 

[11], is a metric to evaluate the aging level of batteries, which often includes capacity fade and/or power fade. Indeed, 

the capability of the battery to store energy (measured in current capacity Ah) and provide a certain power decreases 

over the battery life because of aging or unexpected events.  Despite the importance of battery SOH analysis, it still 

does not a consensus in the literature on how the SOH should be determined. One of the most common SOH parameter 

assessment is the comparison of the current evaluated capacity with standard cycle respect to the initial capacity [11]. 

Recent control architectures include a new battery condition indicator similar to SOH, the so-called state of life (SOL).  

SOL evaluates the aging process due to the charging/discharging cycles performed during the normal operation of the 

storage system [12]. Instead, the SOH indicator monitors the battery health after anomalous or failure events, i.e. 

exceeding the peak current, overcharge, etc.   

As previously mentioned, the initial level of SOH of second-life batteries, in terms of remaining capacity, is at 

SOH=85-80%, and the final value is considered at SOH=50% in [6][8], or SOH=60% in [13]. The development of 

improved battery SOH monitoring methods is still one of the main research topics in the field of LIBs in the automotive 

field, also concerning battery second use [11][14]. Generally, different approaches for SOH estimation through the use 

of model-based observers are proposed in the literature, such as Kalman filters [15][16], sliding mode observers[17], or 

least square filters [12][18]. These methods are usually based on voltage and current measurements, and adopt a battery 

equivalent circuit for model-based assessment. The model parameters should be adaptable to different operating 

conditions to ensure high accuracy on SOH estimation. A known disadvantage of these methods is the high 

computational efforts. 

Data-driven methods, including statistical approach and machine learning methods, don’t require accurate battery 

mathematical models, leading to a reduction of computational efforts [19]-[21]. However, an immense amount of 

measured data history is needed for a good SOH estimation accuracy.  

https://doi.org/10.1016/j.est.2021.102566
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Finally, electrochemical impedance spectroscopy (EIS) based methods are more diffused because they provide 

detailed information about the battery chemical-physical changes properties and different aging mechanisms [22]-[24]. 

Battery SOH monitoring based on EIS information is discussed in current research of secondary batteries [24]-[26] and 

other energy storage systems [27]-[29]. Concerning this promising method, there is a need to investigate the correlations 

between impedance information and battery SOH, the frequency range suitable for the analysis, and the implementation 

methods to make it easy to use. The aging mechanism can be studied using electrical circuit equivalent models, whose 

parameters are well identified fitting EIS data in a defined frequency band. Usually, the Randles circuit models [30][31] 

are used to fit impedance data. 

Phenomena induced by cell structure and by its modification over time include: inductive behaviors, film formation, 

charge-transfer resistance and double-layer capacitance on the electrode-electrolyte interface, and diffusion processes 

in the active materials of the electrodes; according to literature, such phenomena can be investigated adopting EIS. 

Several research works in [22]-[36] confirm a monotonous increase of ohmic resistance (𝑹𝜴) with battery degradation. 

To demonstrate the robust correlation between 𝑹𝜴 and SOH, experiments are carried out at different battery operating 

conditions: in [32][33] at different battery state of charge (SOC), considering fixed room temperature; in [34][35] at a 

different rate of discharge (C-rate); finally at different room temperature in [24][36]. Research work in [37] confirms a 

correlation between the increase of the resistance charge transfer (𝑹𝑪𝑻) between electrodes with the aging cycles 

considering different temperature and SOC. In [38], the growth of the solid electrolyte interphase (SEI) film resistance 

(𝑹𝑺𝑬𝑰) is identified and correlated with battery SOH. Finally, the increase of double-layer capacitance (𝑪𝑫𝑳) with aging 

is considered in [22][24]. The parameters cited are identified by using a non-linear best-fitting algorithm, for example, 

the most commonly used Levenberg-Marquardt method, which requires a high computational effort and an accurate 

choice of initial parameter values. Other research works [20][21] propose data-driven algorithms based on machine 

learning techniques to estimate battery SOH. Finally, research works in [39][40] present significant results since they 

correlate one single frequency response of battery with SOH: in [39], the increase of measured 100 mHz real battery 

impedance with aging is evaluated, testing four different lithium battery chemistry; in [40], the 316 Hz impedance shows 

negligible change respect to battery SOC and changes dramatically during overcharge. These last methods could be 
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considered an idea to perform a fast SOH diagnosis. However, for the development of an original method, it is 

fundamental to understand how to perform impedance spectroscopy identification with a simple test procedure; 

requirements of the application are also the adaptability to embedded systems and the reduced test time. Rapid and real-

time EIS measurement methods are proposed in the literature in the last years. Authors in [41]-[48] propose different 

types of “broadband” current signal excitation for EIS identification in a set of frequencies at the same time. One of the 

most popular broadband excitation signals used is the multi-sine [41]-[43]: this signal is a sum of sines which frequency 

corresponds to the desired discrete set of frequency measured, with random phase. The multi-sine excitation approach 

offers more accurate EIS measurements [41][42], and various advantages in the detection of non-linear behaviors [43]. 

Pseudo-random sequence (PRS) signals are attractive alternatives, due to their low complexity, measurement time, and 

good accuracy [44]-[49].  The PRS family signals are periodic sequences that switch between two or three logic levels 

[44], so it shows a simple hardware implementation. Despite the multi-sine signal could provide accurate EIS 

measurements, the PRBS offers a more simple hardware implementation, which is fundamental for real-time battery 

state monitoring.   

In conclusion, literature analysis shows an extensive investigation in literature of LIBs SOH monitoring during aging 

using EIS. Despite many authors in their research works have defined some condition indicators in the frequency domain 

to directly quantify SOH, the identification of these parameters has been obtained by high computational effort 

algorithms or with expensive facilities. This brief review shows that there are relatively few methods for monitoring 

battery SOH with EIS data adaptable in real-time applications. The main contribution of this work is the development 

of a new methodology to diagnose battery SOH by fast EIS measurements, addressed to embedded applications. This 

was achieved by realizing a low cost, low energy consumption, and low test time hardware PRBS generator. A large 

number of experimental EIS tests are performed at four EOL cells with different SOHs. Impedance measurements on 

cells under test are extracted performing EIS tests at various SOCs and different excitation current amplitudes. By 

experimental results, we will infer a noticeable correlation between SOH and impedance measurements. Indeed, we 

will determine frequency points (SOH frequencies) in which the impedance measurements dramatically change at 

different cell SOH. This was possible by clustering the set of cell impedances, measured at different SOH, in rectangular 

https://doi.org/10.1016/j.est.2021.102566
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areas defined in Nyquist diagrams (SOH clusters). The remainder of this paper is structured as follows. Section II 

describes the proposed method including requirements, indicators, and excitation signal characteristics. Section III 

describes the prototype testbed and shows measurements on new cells. Section IV includes the results obtained by aged 

cells testing and the data processing procedure. 

II. A GENERAL PRINCIPLE FOR FAST EIS IDENTIFICATION 

A. System Requirements 

To perform EIS measurement, the battery system under test must be assumed and validated as LTI dynamic system. 

The linearity property can be assumed if the system is submitted to a small current excitation. However, a very small 

current perturbation causes noisy voltage response. Hence, it’s important to select the input signal excitation with an 

appropriate amplitude, not too large because it would induce a non-linear response of the system and not too small 

because it would induce noisy responses. The time-invariant property can be assumed if the parameters, which define 

the battery system, are not changing with time. The main causes for time-variance in the battery system are the variations 

of temperature, SOC, current excitation (in terms of amplitude and sign), and finally aging. Moreover, if the battery 

voltage is in a transient state and has not reached its steady state, the system is considered as time-variant. The effects 

of time-variance in EIS measurements are noticeable in low frequency and are shown in [50][51]. Hence, to avoid 

impedance errors related to time-variant system behavior, sufficiently long rest time is required before the EIS test start, 

and, during the test, influence factors, especially temperature, must not change.  

If the LTI assumptions are validated during the EIS test, battery impedance can be represented by the discrete-Fourier 

transform (DFT): 

1
2

0

( ) [ ]
N

j kn

n

Z k z n e 
−

−

=

=  (1) 

The variable 𝑘 ∈ [-1/2, 1/2] is the normalized frequency and N is the number of the harmonics. If the system is 

bounded-input bounded-output (BIBO) stable and the battery current input used for the EIS test is a periodic signal or a 

signal realization of a stationary stochastic process, the steady voltage response is the result of a stationary stochastic 

process. Hence, the impedance transfer function estimate is the ratio of two spectral estimates [52]: 
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Where: Φ𝑖𝑖(𝑘) is the battery current input power spectral density (PSD), and Φ𝑣𝑖(𝑘) is the cross-PSD (CPSD) of the 

battery voltage-current signal, computed by the voltage and current DFTs 𝑉(𝑘), and 𝐼(𝑘): 

*

*

( ) ( ) ( )

( ) ( ) ( )

ii

ii

k aI k I k

k aV k I k

 =

 =
 (3) 

Where a is a normalization factor, * denotes complex conjugation. 

B. Quality Indicators 

The validity of EIS measurements can be monitored by using different methods discussed in the literature [50]-[57]. 

As mentioned, the battery system’s LTI property must be validated, and, given a current input, the observed output 

voltage response must not be noisy. One of the most common methods to check if the LTI property of a system is 

maintained is the Kramers-Kronig relation validity test [50][51]. The Kramers-Kronig relation dictates that real and 

imaginary parts are interdependent, presented in the Kramers-Kronig (KK) transform integrals [50], for a LTI and causal 

system. An interesting KK test algorithm is employed to validate the EIS measurements and it is presented in [51] and 

applied in [42]. The drawback of this method is the high computational effort. An alternative approach is the monitoring 

of the ordinary coherence value in frequency. Given the current input and voltage output PSD Φ𝑖𝑖(𝑘), Φ𝑣𝑣(𝑘), and the 

CPSD Φ𝑣𝑣(𝑘) ordinary coherence function [52]-[54] at the frequency k is defined as: 

2
2 | ( ) |
( )

( ) ( )

vi
vi

ii vv

k
k

k k



=
 

 (4) 

This quality indicator, normalized between [0,1], can be viewed as the correlation coefficient between the input and 

output sequences at the frequency k. For an ideal LTI system, ordinary coherence is 1 in the frequency domain. If the 

input-output relation is completely unrelated, the coherence value is 0. If at a given frequency the coherence is greater 

than 0 and less than 1, the input-output relationship is not perfectly linear, or extraneous noises interfere in the output 

voltage measurement. The noise PSD Φ𝑚𝑚(𝑘) is related to coherence in [52] and evaluated according to the equation: 
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2( ) (1 ( )) ( )vimm vvk k k = −   (5) 

According to (5), given noise and output PSD, the output signal-to-noise ratio (SNR) can be estimated by ordinary 

coherence: 

2

2

( )
( )

1 ( )

vi

vi

k
SNR k

k




=

−
 (6) 

The ordinary coherence is a reliable quality indicator that can validate the impedance measurements, checking the 

LTI assumption for the battery system under test and the relative output SNR for each frequency measured k.  

C. Excitation input signal: Pseudo-Random Binary Sequence (PRBS) 

Broadband input signals are usually used for system identification in a wide frequency range, reducing test time. 

Three different classes of broadband signals have been considered in literature [52]-[54]: 

• random signals (filtered Gaussian white noise and binary signals); 

• transient signals (pulse or burst signals);  

• periodic signals (multi-sine, pseudo-random sequences). 

 Periodic excitation signals are often used because they exhibit a lower crest-factor [52][53]. In this way, an accurate 

impedance estimation can be performed with low energy consumption. Finally, the spectral content of periodic signals 

can be optimized to prevent harmonic distortions due to leakage problems [54]. In this work, the pseudo-random binary 

sequence (PRBS) signal is chosen as the excitation input signal because it requires simple hardware implementation in 

comparison to a multi-sine approach or other periodic signals. This is a very important feature for a large scale industrial 

application. Denoted by the variable 𝑢𝑡, the PRBS is a deterministic and periodic sequence of length N which that 

switches between two logic levels {0,1}, and it is generated by the differential equation at step t: 

1 1rem( ,2)t t m t mu a u a u− −= ++  (7) 

Where rem(𝑥, 2) is the modulo-2 addition on 𝑥 [52], and 𝑎𝑖 is the 𝑖 −gain factor that takes integer values {0,1}, for 

𝑖 = 1, … , 𝑚. The vector of past inputs [𝑢𝑡−1, 𝑢𝑡−2, … , 𝑢𝑡−𝑛] can only assume 2𝑚 different values. Thus, the input signal 

𝑢𝑡 is periodic with a period of at most 2𝑚. In [52] it’s proven that PRBS signal can have a maximum period of 𝑀 =
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2𝑚 − 1 using an appropriate combination of gain factors vectors [𝑎1, 𝑎2, … , 𝑎𝑚]. In [55], the PRBS signal (7) is 

generated considering a closed-loop shift register configuration of 𝑛 bits in series, requiring a very simple hardware 

implementation. This binary sequence, if well designed, has properties similar to those of a white noise signal in the 

frequency domain. This is a clear advantage since it’s possible to excite the system over a wide bandwidth, accelerating 

testing procedures.  

The difference between the PRBS with maximum period length 𝑀 = 2𝑚 − 1 and white noise auto-covariance 

function decreases when the number of registers considered increases. Consequently, the difference between white noise 

and PRBS power spectral density (PSD) function decreases. In [52][53] we observe that the spectrum expression of 

PRBS of amplitude U is according to the following equation, at the angular frequency ω: 

1

1

2 2
( ) ( ), 0 2

M

uu

k

k
U

M M

 
    

−

=

 = −    (8) 

Where δ is the Dirac delta function. By (8), in the angular frequency region [−𝜋, 𝜋] there will be 𝑀 − 1 frequency 

peaks. Therefore, PRBS shows a flatter PSD increasing the period, similar to the white noise signal. In this work, the 

number 𝑚 = 10 of registers, hence a period of 𝑀 = 1023 samples, is chosen for the PRBS generator used for the EIS 

test. Therefore, the PRBS with a period of 𝑀 = 1023 samples has a band-limited flat PSD (8). We define the clock 

frequency fc at which the input PRBS ut (7) is synchronized. In [53] it is demonstrated that the PRBS presents an almost 

flat spectrum over the frequency band [
𝑓𝑐

𝑚⁄ , 𝑓𝑐], hence, in this work,  over one frequency decade. Finally, the choice 

of a sampling frequency fs about ten times the maximum frequency band is advisable for system identification in the 

frequency domain [52]. 

III. EXPERIMENTAL APPROACH AND VALIDATION EIS RESULTS 

A. Laboratory setup and test procedure 

The scheme of the proposed laboratory EIS test setup is depicted in Figure 1: the testing procedure, for system 

identification in the frequency domain, consists of exciting the battery in current with the periodic PRBS signal, using 

a low-cost programmable PRBS generator, discussed in the previous work [49]. An electronic circuit was designed to 

generate discharging PRBS current on the battery, shown on the left of Figure 1: the excitation signal is generated by 
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the microcontroller Texas F23879D, which, driving a power Mosfet, opens and closes the circuit at the clock frequency 

𝑓𝑐.  

The current PRBS signal generated has two current levels {0, 𝐼}, where 𝐼 is controlled by the variable resistance 

𝑅𝐿𝑜𝑎𝑑 inserted in series with the transistor. There is the possibility to conduct two different tests, switching manually 

the circuit selector shown in Figure 1: if the circuit is selected in 1, EIS test is performed on the battery under test (BUT); 

else, if the circuit is selected in 2, a reference sample impedance is inserted in series with the previous circuit. This last 

circuit will be used to validate impedance measurements and check the instrument accuracy. During the EIS test, battery 

voltage and current are measured and acquired by the DSpace MicroLabBox at a sampling frequency of 20 kHz, which 

is ten times the maximum EIS frequency band on which authors investigate for SOH diagnosis. Moreover, room and 

battery surface temperature are measured, with a sample time of 1s. When the EIS tests are finished, voltage and current 

data are processed to evaluate impedance (2) and coherence (4), following the approach explained as following. 

 

Figure 1. Laboratory battery EIS test setup on the right, electronic circuit of PRBS current generator on the left.  

The experimental test protocol is illustrated in Figure 2: a charged battery (SOC=100%) is subjected to different EIS 

tests. Research works [22]-[38] investigated the battery SOH by EIS data in the frequency range approximately from 

mHz to kHz. In this work, battery impedance is evaluated in the frequency band [4,1600] Hz. In this specific range, 

research works [33]-[38] depicted that SOH characterizes the change of impedance curve, such as the change of ohmic, 

charge-transfer, and SEI resistance. Moreover, fast impedance measurements can be carried out in this range. As 
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mentioned, the PRBS, with 𝑚 = 10 registers, has a flat spectrum in about one-decade frequency, based on the clock 

frequency. Therefore, the battery impedance spectrum will be estimated taking three consecutive PRBS tests at different 

clock frequency into consideration: 50, 500, and 4000 Hz. More details about PRBS are illustrated in Table 1. Tests are 

repeated considering various SOC and amplitude levels of PRBS current (C-rate), described in Table 2. Tests are 

performed starting from the highest SOC to the lower ones. Assuming that all EIS tests performed require less than 1% 

of battery SOC consumed, the battery is discharged at the rate of discharge of C/2 until it losses the remaining energy 

that is needed to reach the next desired SOC level. After a rest time of 1 h, to allow the battery voltage to reach its 

steady-state, EIS tests are carried out again. The experimental test is finished when the EIS tests are performed on the 

battery at the end of the discharge (about 2%). Based on battery voltage and current measurements, with a sample time 

of 20 kHz, battery impedance is evaluated in the frequency range [4,1600] Hz: we extracted 21 linearly spaced frequency 

points for every PRBS test at different clock frequency, as shown in Table 1. The guideline for appropriate bandwidth 

measured, by using the PRBS, is given in [53] equalling to 0.4𝑓𝑐. By results shown in Figure 3, we maintain this 

constraint for the 4 kHz PRBS, whereas we relax the last constraint considering the 50 and 500 Hz PRBS. 

Table 1. Impedance measurement specifications  

PRBS clock 

frequency (Hz) 

Period time (s) 

(1023 samples) 

Test duration time  (s) 

(≥6-period repetitions) 

Number of impedance 

measurements in the 

frequency 

Frequency 

resolution 

(Hz) 

Frequency 

band (Hz) 

50 20.6 125 21 1.4 [4,40] 

500 2.6 60 21 13.25 [45,400] 

4000 0.256 10 21 82.50 [450,1600] 
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Table 2. EIS Test specifications performed on a single cell  

Parameters change  Values N. of test repetition 

PRBS clock frequency [50,500,4000] Hz 3 

PRBS discharging current 

amplitude (C-rate) 

[C/3,C/4,C5,C/6,C/20,C/25]  3 

Battery SOC [100,80,60,40,20,2] % 3 

 

Impedance and coherence are estimated at different frequencies based on battery current PSD and voltage-current 

CPSD according to (2) and (4). These power spectral densities are estimated in frequencies applying the Welch 

periodograms [56]: voltage and current measurement signals are split into disjointed 𝐿𝑓 frames of length 𝑁𝑓. Then, the 

voltage and current Fast Fourier transforms of every frames are computed according to (1), and multiplied by using 

Hamming window function. Hence the PSD and CPSD are computed according to (2), finally, the Welch periodogram 

estimator evaluates the PSD and CPSD computing the following mean value: 
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Figure 2. Experimental test protocol  
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B. Reference sample impedance circuit measurements 

As mentioned in the previous section, the accuracy of EIS measurements is validated considering the electrical 

equivalent circuit given in Figure 1, switching the circuit selector in 2. Similar work was carried out in [57]. Referring 

to Figure 1, the circuit configuration, composed by the passive circuit elements R0, R1, C1, defines the reference sample 

impedance. The circuit parameters are selected to describe a portion of a semi-circle. The resistance 𝑅0 = 1 Ω ±5% is 

in series with RC group in parallel, composed by 𝑅1 = 50 mΩ ±5% and 𝐶1 = 0.01 F ±20%, considering a parasitic 

resistance 𝑅𝑝 = 10 mΩ ±5%  in series to capacitive element, given by the manufacturer. The battery under test is a 

Li[NiCoMn]O2-based Cathode type (briefly called NMC) pouch cell, having a nominal capacity of 20 Ah [58]. For each 

PRBS signal at different clock frequency, impedance measurements are performed at various current amplitudes and 

different SOCs, shown in Table 2. This leads to a large number of EIS tests, in which impedance and coherence are 

computed. Impedance estimate results are compared with the theoretical impedance in the frequency range of [4,1600] 

Hz. The results demonstrated that measurements of sample impedance at different SOCs are very similar. Therefore, 

the authors will neglect this difference when discussing the validation of the sample impedance estimation. The 

corresponding estimated coherence, at different PRBS input signal, is depicted in Figure 3, whereas the estimated 

sample impedance is depicted in Figure 4. The estimated ordinary coherence is close to 1 all over the frequency band. 

Therefore, we infer by results in Figure 3 that the battery under test can be considered as LTI system, hence sample 

impedance can be well estimated. The results shown in Figure 4 demonstrate that the real and imaginary part of the 

sample impedance measurement of the laboratory test setup’s accuracy slightly decreases when the clock frequency of 

the PRBS signal is increasing, especially during the test with a clock frequency 𝑓𝑐 = 4 kHz. This is noticeable also 

observing the coherence estimated in Figure 3. Finally, the results of measured sample impedance had shown a well-

known bias estimation error of 5%, which is corrected by authors. A similar bias estimation error is obtained in [57]. 
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Figure 3. Ordinary coherence estimated using input PRBS signal excitation at different clock frequencies and current 

amplitudes (Battery is at 60% of SOC, estimation of sample impedance)  

 

Figure 4. Reference impedance measurements using input PRBS signal excitation at different current amplitudes 

(Battery is at 60% of SOC, estimation of sample impedance): a) Nyquist plot, b) Real impedance and c) – Imaginary 

impedance vs frequency  
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C. New cell impedance measurements 

The battery impedance estimation is performed considering the equivalent circuit given in Figure 1, switching the 

circuit selector in 1. In this section, the NMC new cell is under test. EIS results are depicted in Figure 5. 

 

Figure 5. EIS measurements using input PRBS signal at different a) current amplitudes (fixed SOC 60%) and b) SOCs 

(fixed current amplitude C/4) 

We notice that all the battery impedance measurements are about in the interval of 2 mΩ, in the real part, and 0.5 

mΩ, in the imaginary part. These intervals are shorter than the sample impedance measurements in the previous 

experiment, hence, the external noise sources could strongly affect the EIS measurements, decreasing the ordinary 

coherence. As just mentioned, noise contributions can be minimized by increasing the excitation power when an 

improved coherence is reached, as shown in Figure 6. The battery impedance curves measurements given in Figure 5 

(on the left) show a slight difference when changing the current discharging amplitude.  Instead, results given in Figure 

5 (on the right) show that there is a drastic change of impedance curve when the battery is at the end of discharge, 

confirmed also in [33][35]. 

IV. SOH DIAGNOSIS BASED ON EIS DATA 

A. Testing cell at different state of healths 

To detect battery SOH using EIS tests, five pouch NMC cells, of the same manufacturer, were tested at different 

SOHs. In this work, battery SOH is considered by the variation of battery capacity compared to its ideal condition, in 

this case, 20 Ah. One of the five cells under test is fresh and therefore considered as at the beginning of life (new cell). 

The other four cells have been cycled until they reached EOL for automotive application, and beyond. Results of the 

https://doi.org/10.1016/j.est.2021.102566


This document is the pre-print version of the article:  

Locorotondo, E., Cultrera, V., Pugi, L., Berzi, L., Pierini, M., Lutzemberger, G., 2021. Development of a battery real-time state of 

health diagnosis based on fast impedance measurements. Journal of Energy Storage 38, 102566. 

https://doi.org/10.1016/j.est.2021.102566 

 

20 

 

capacity test, which denote the current battery SOH, are shown in Table 3. The EOL cells were subjected to 4 different 

cycle life test, composed by constant-current (CC), at current amplitude C/2, and, finally, constant-voltage (CV) 

charging; followed by discharging phases (C/2), interspersed with pauses, at a room temperature of 35℃ [59]. Cycle 

life tests were carried out in ENEA research center from 2015 to 2018. More details about cycle life tests and cell history 

are shown in [12][59]. Afterwards, the cells have not been used for about 2 years, and have been stored in the same 

conditions (in a not thermally controlled environment). 

Table 3. Battery cells at different SOHs  

Battery n.  Last capacity estimated 

(Ah) 

State of Health 

(%) 

#0 20 100 

#3 16 80 

#4 17 85 

#5 12 60 

#8 10 50 

 

B. Battery impedance data-set 

The laboratory setup, shown in Figure 1, was used to perform EIS in the frequency band [4,1600] Hz, using the 

PRBS signal excitation in current at three different clock frequencies. For each PRBS test, we extract 21 impedance 

measurements for each different clock frequency PRBS in the band specified in Table 1. To investigate if there is a 

robust correlation between impedance information and SOH, we measure battery impedance at various operating 

conditions. According to Table 2, EIS is executed at six different battery SOC, and two different PRBS discharging 

current amplitudes, exactly at C-rate C/4, and C/20. To test the laboratory setup’s repeatability, tests were repeated three 

times. Summarizing, we performed a large number of EIS experiments for each cell, collecting a large number of 

impedance measurements. Results of the repeatability test had shown a very negligible variation of battery impedance 

estimation, then, the mean impedance value will be shown in this work whereas the authors will discuss of EIS data set 

and data clustering. Finally, the data set of each cell under test is composed of 756 impedance measurements in the 
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defined frequency band. Concerning a single frequency investigated, the data-set is composed of 12 impedance 

measurements, at various SOCs, and rate of discharge. Results obtained by ordinary coherence for EOL cells are shown 

in Figure 6. We infer that there is a slight increase in ordinary coherence with SOH decreasing. A complete view of the 

impedance points extracted for every cell is depicted in Figure 7. It’s noticeable, as mentioned in the literature, the shift 

on the right of the impedance curve, which means an increase of the real part of battery impedance, i.e. the increase of 

the ohmic resistance, a fact in accordance with other literature observations [22]-[36]. Moreover, the increase of the 

semi-ellipses arcs with aging is noticeable in Figure 7, which means the increase of the charge transfer resistance [37] 

and the SEI resistance [38] with aging. We observe in Figure 7 that the impedance curve of the new cell is an order of 

amplitude different respect to the EOL cells. Moreover, the new cell is completely disjointed with the EOL cell 

impedance curves. Therefore, using the EIS test, it is simple to distinguish a new cell from the EOL cell by performed 

measurements of impedance. 
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Figure 6. Mean ordinary coherence estimated during EIS test for different cells using the excitation PRBS with 

discharging current amplitude of a) C/4, b) C/20 

 

Figure 7. Battery EIS measurement data-set in the frequency band [4,1600] Hz, at various SOCs and PRBS 

discharging current amplitudes 

C. Data clustering 

Diagnosis and identification of the battery SOH are performed by using the EIS test. The question remains as to 

whether there are frequency points in which battery impedance is evaluated in a well-disjointed range of measurement, 

carried out at various operating conditions, such as SOCs and current C-rate. We infer by Figure 7 that, in some 

frequency points, there is the possibility to cluster disjointed area of impedance measurements in the Nyquist diagram. 

An example is shown in Figure 8, considering the frequency measurement of 88.8 Hz. For every frequency, all the SOH 

area clusters are defined in the Nyquist diagram enclosing the 12 impedance measurements, by using rectangle 

geometry. Every rectangle’s edge is defined by the maximum and the minimum value of the real and imaginary part of 

impedance measured, adding or subtracting an external factor: 

0 , , , ,( ) [( ) ( )]real dataset imag dataset real ins imag insj G j     = + + +  (10) 

The value of the external factor corresponds to the sum of the maximum variation (std) observed by the impedance 

measurements in all the single frequency clusters (𝜎𝑟𝑒𝑎𝑙,𝑑𝑎𝑡𝑎𝑠𝑒𝑡 + 𝑗𝜎𝑖𝑚𝑎𝑔,𝑖𝑛𝑠), and of the uncertainty (𝜎𝑟𝑒𝑎𝑙,𝑖𝑛𝑠 +

𝑗𝜎𝑖𝑚𝑎𝑔,𝑖𝑛𝑠) of the laboratory setup shown in Figure 4, relative to the diameter of the reference sample impedance. The 

gain factor G0=0.5 is considered in (10). 
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Figure 8. Battery EIS measurement data clustering at frequency 88.8 Hz  

V. RESULTS & DISCUSSION 

A. Detection of SOH frequencies 

In section II, we have demonstrated that battery impedance can be fast measured by using the low-cost PRBS 

generator shown in Figure 1. A large number of EIS experiments are performed on four EOL cells and described in 

section III. By clustering the impedance measurements in rectangular areas, we can detect the SOH frequencies. In these 

frequencies the SOH area clusters are disjointed, hence, they are candidates as reliable SOH indicators. As noticeable 

in Figure 8, the SOH clusters are disjointed if and only if there is no intersection between real-axis or between imaginary-

axes of rectangles. The EIS measurements were carried out at different battery operating conditions, hence SOC 

variations [0,100] % and PRBS current C-rate amplitudes variations (C/4, C/20). The SOH clusters are defined for each 

frequency measured and cited in Table 2. The results obtained have demonstrated that it is not possible to highlight a 

SOH frequency in which the imaginary-axes of SOH clusters are disjointed and real-axes not. Indeed, as demonstrated 

by some research work in literature [22][24], the real impedance measurement is usually exploited to detect battery 

aging defined. The total number of SOH frequencies detected is 3 than 61 frequencies measured, in the band [4÷1600] 

Hz. The SOH frequencies and the corresponding SOH clusters are shown in Table 4 and Figure 9.  We infer that there 

is a noticeable variation of battery impedance measurement at different SOH in the three frequencies measured in the 

band [53.8÷88.8] Hz, by using the 500 Hz PRBS. In this first result, we consider all the EIS experiments. In the next 

section, we will detect larger and new SOH frequency bands by filtering experimental data.  
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Figure 9. Detection of the SOH frequencies, illustrating the real impedance measurements for the different aged cells 

enclosed by disjointed area clusters  

B. Detection of SOH frequencies filtering data 

SOH cluster’s areas change when filtering the EIS experiment. Hence, the number of SOH frequencies detected 

could be changed. We have analysed and defined the clusters considering 4 different types of EIS experiment filtering:  

• Case (a): EIS experiments in the SOC interval [20÷80] % (impedance measurements at extreme of SOC values are 

less reliable). 

• Case (b): EIS experiments with PRBS current of discharge amplitude of C/20 (response with lower currents). 

• Case (c): EIS experiments with PRBS current of discharge amplitude of C/4 (response with higher currents) 

• Case (d): EIS experiments in the SOC interval [20÷80] %, with PRBS current of discharge amplitude of C/4 (best 

condition, high current, reliable SOC values). 

The SOH frequencies detected, filtering data according to the four different cases study are shown in Table 4. The 

corresponding SOH clusters obtained in the SOH frequencies are shown in Figure 10. Results obtained in the case (a) 

confirm the detection of the same SOH frequency band observed in the previous analysis. Moreover, a new frequency 

band is detected: [4÷24] Hz, measured by using the 50 Hz PRBS. This last results confirm that, as cited in the literature 

[24], and shown in Figure 5, impedance measurements drastically change their value when the EIS test is performed at 

the extreme of battery SOC. Hence, removing these data, impedance measurements are closes to them. Referring to the 
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case (b), the SOH frequency band becomes larger ([54, 125] Hz) than the case (a). Nevertheless, the SOH frequency 

band [4÷24] Hz disappears, because we consider the impedance measurements at the extreme of SOC.  

Generally, the impedances measured in the cases (a) and (b) are not very close to them. Indeed the power spectral 

of PRBS excitation signal with C/20 current amplitude is low, hence, voltage output observed is more affected by noise, 

decreasing the coherence spectra results, as shown in Figure 6. Hence impedance measurements are less reliable. This 

deduction is confirmed by the case (c): increasing the power of the PRBS excitation signal until C/3, the impedance 

measurements in the SOH frequencies, are very close to them, as shown in Figure 10. We infer that all frequencies 

measured by using 50 Hz and 500 Hz PRBS become a good indicator of battery SOH. Moreover, the new SOH 

frequency band [461÷922] Hz extracted by the 4 kHz PRBS is detected. Finally, results obtained in the case (d) 

demonstrate that all the frequency measured become as SOH frequencies. This last case, considering only the impedance 

measurements at the SOC in [20÷80] % and high current excitation, could be an acceptable constraint for EIS 

measurements in real-time applications. Usually, battery packs are used with a reduced DOD (not 100%), prolonging 

their lifetime. Moreover, all the EIS tests consumed less than 1% of battery SOC.  As it is well observable from Figure 

8-10, the clustering of the impedance measurements allows us to determine the SOH directly. The experimental EIS 

tests allowed us to define each SOH cluster region in an appropriate range of impedance measurement (real or imaginary 

part). For every single SOH frequency detected, the SOH clusters are disjointed between them.  Hence, we can assess 

SOH with low computational efforts by performing the fast EIS test in one of the SOH frequency bands detected. 
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Figure 10. Detection of the SOH frequencies, filtering data: (a) SOC in [20÷80] %; (b) fixed C-rate C/20; (c) fixed 

C-rate C/4; (d) SOC in [20÷80] % and fixed C-rate C/4 
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Table 4. Detection of the SOH frequencies considering different battery impedance data set  

Impedance 

data set  

Number of 

impedance 

measured 

in single-

frequency  

50 Hz PRBS 500 Hz PRBS 4 kHz PRBS 

Frequency 

band (Hz) 

SOH 

frequency 

band (Hz) 

Frequency 

band (Hz) 

SOH 

frequency 

band (Hz) 

Frequency 

band (Hz) 

SOH 

frequency 

band (Hz) 

SOC 

[0÷100] 

%, Current 

amplitude 

PRBS 

C/4,C/20 

36 [4÷40] / [53÷400] [53,89] [450÷1600] / 

SOC 

[20÷80] 

%, Current 

amplitude 

PRBS 

C/4,C/20 

24 [4÷40] [4÷24] [53 ÷400] [53 ÷89] [450÷1600] / 

SOC 

[0÷100] 

%, Current 

amplitude 

PRBS 

C/20 

18 [4÷40] / [53 ÷400] [53 ÷125] [450÷1600] / 

SOC 

[0÷100] 

%, Current 

amplitude 

PRBS C/4 

18 [4÷40] [4÷40] [53 ÷400] [53 ÷400] [450÷1600] [450,922] 

SOC 

[20÷80] 

%, Current 

amplitude 

PRBS C/4 

12 [4÷40] [4÷40] [53 ÷400] [53 ÷400] [450÷1600] [450÷1600] 

 

CONCLUSIONS 

The electrochemical impedance spectroscopy (EIS) is a powerful method to investigate the state of lithium batteries. 

The proposed methodology is applied to a specific benchmark cell but it should be extended almost to any kind of energy 

storage system. In this work, authors not only explore the feasibility of the proposed approach but evaluate how specific 
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test parameters/specifications can affect the quality of performed evaluations. The chosen excitation signal plays a key 

role in defining the complexity and consequently the industrial applicability of proposed spectroscopy techniques. 

The PBRS excitation signal has proven, in this work, to be a good solution for possible industrial implementation. 

Authors have experimentally verified that it’s possible to generate the PRBS signal with relatively cheap hardware to 

perform battery impedance measurements that in literature are typically obtained with far more expensive and specialized 

equipment. 

Preliminary experimental activities have been performed both on a reference sample impedance to assess the 

capability of the system to identify a generic impedance and to propose a simple calibration method for field or industrial 

related activities.  

Finally, EIS tests are performed on four end-of-life (EOL) automotive cells, ready for possible second use in less-

demanding applications. Results confirm the existence of specific frequency bands candidate as a reliable and robust 

indicator of the state of health, depending on the operating conditions of the battery. Clustering impedance measurements 

in SOH regions allowed to detect these frequencies and correlate SOH with cell impedance with low computational 

efforts.  

More generally, the study of second-life batteries is the only one of the many possible applications of a method that 

has proven to be fast and reliable. This novel method should be extended to many other applications in which a fast and 

accurate diagnostic of cell state of health has to be performed. 

REFERENCES 

 

[1] Berckmans, G., Messagie, M., Smekens, J., Omar, N., Vanhaverbeke, L., & Van Mierlo, J. (2017). Cost projection 

of state of the art lithium-ion batteries for electric vehicles up to 2030. Energies, 10(9), 1314. 

[2] Blomgren, G. E. (2016). The development and future of lithium ion batteries. Journal of The Electrochemical 

Society, 164(1), A5019. 

[3] Lebedeva, N., Persio, F.D., Boon-Brett, L., 2017. Lithium ion battery value chain and related opportunities for 

Europe (No. EUR 28534 EN). Publications Office of the European Union, Luxembourg. 

https://doi.org/10.1016/j.est.2021.102566


This document is the pre-print version of the article:  

Locorotondo, E., Cultrera, V., Pugi, L., Berzi, L., Pierini, M., Lutzemberger, G., 2021. Development of a battery real-time state of 

health diagnosis based on fast impedance measurements. Journal of Energy Storage 38, 102566. 

https://doi.org/10.1016/j.est.2021.102566 

 

29 

 

[4] Omar, N., Monem, M. A., Firouz, Y., Salminen, J., Smekens, J., Hegazy, O., ... & Van Mierlo, J. (2014). Lithium 

iron phosphate based battery–assessment of the aging parameters and development of cycle life model. Applied 

Energy, 113, 1575-1585. 

[5] Bobba, S., Podias, A., Di Persio, F., Messagie, M., Tecchio, P., Cusenza, M. A., ... & Pfrang, A. (2018). 

Sustainability Assessment of Second Life Application of Automotive Batteries (SASLAB). JRC Exploratory 

Research (2016-2017 Final report). 

[6] Neubauer, J., & Pesaran, A. (2011). The ability of battery second use strategies to impact plug-in electric vehicle 

prices and serve utility energy storage applications. Journal of Power Sources, 196(23), 10351-10358. 

[7] Groenewald, J., Grandjean, T., & Marco, J. (2017). Accelerated energy capacity measurement of lithium-ion cells 

to support future circular economy strategies for electric vehicles. Renewable and Sustainable Energy Reviews, 

69, 98-111. 

[8] Martinez-Laserna, E., Gandiaga, I., Sarasketa-Zabala, E., Badeda, J., Stroe, D. I., Swierczynski, M., & Goikoetxea, 

A. (2018). Battery second life: Hype, hope or reality? A critical review of the state of the art. Renewable and 

Sustainable Energy Reviews, 93, 701-718. 

[9] Shen, P., Ouyang, M., Lu, L., Li, J., Feng, X., 2018. The Co-estimation of State of Charge, State of Health, and 

State of Function for Lithium-Ion Batteries in Electric Vehicles. IEEE Transactions on Vehicular Technology 67, 

92–103. https://doi.org/10.1109/TVT.2017.2751613 

[10] Friesen, A., Horsthemke, F., Mönnighoff, X., Brunklaus, G., Krafft, R., Börner, M., Risthaus, T., Winter, M., 

Schappacher, F.M., 2016. Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion 

cells: Combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis. Journal of 

Power Sources 334, 1–11. https://doi.org/10.1016/j.jpowsour.2016.09.120 

[11] Berecibar, M., Gandiaga, I., Villarreal, I., Omar, N., Van Mierlo, J., & Van den Bossche, P. (2016). Critical review 

of state of health estimation methods of Li-ion batteries for real applications. Renewable and Sustainable Energy 

Reviews, 56, 572-587. 

https://doi.org/10.1016/j.est.2021.102566


This document is the pre-print version of the article:  

Locorotondo, E., Cultrera, V., Pugi, L., Berzi, L., Pierini, M., Lutzemberger, G., 2021. Development of a battery real-time state of 

health diagnosis based on fast impedance measurements. Journal of Energy Storage 38, 102566. 

https://doi.org/10.1016/j.est.2021.102566 

 

30 

 

[12] Ceraolo, M., Giglioli, R., Lutzemberger, G., Langroudi, M. M., Poli, D., Andrenacci, N., & Pasquali, M. (2018, 

June). Experimental analysis of NMC lithium cells aging for second life applications. In 2018 IEEE International 

Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems 

Europe (EEEIC/I&CPS Europe) (pp. 1-6). IEEE. 

[13] Saez-de-Ibarra, A., Martinez-Laserna, E., Stroe, D. I., Swierczynski, M., & Rodriguez, P. (2016). Sizing study of 

second life Li-ion batteries for enhancing renewable energy grid integration. IEEE Transactions on Industry 

Applications, 52(6), 4999-5008. 

[14] Waag, W., Fleischer, C., & Sauer, D. U. (2014). Critical review of the methods for monitoring of lithium-ion 

batteries in electric and hybrid vehicles. Journal of Power Sources, 258, 321-339. 

[15] Watrin, N., Blunier, B., & Miraoui, A. (2012, June). Review of adaptive systems for lithium batteries state-of-

charge and state-of-health estimation. In 2012 IEEE Transportation Electrification Conference and Expo (ITEC) 

(pp. 1-6). IEEE. 

[16] Chen, Z., Mi, C. C., Fu, Y., Xu, J., & Gong, X. (2013). Online battery state of health estimation based on 

Genetic Algorithm for electric and hybrid vehicle applications. Journal of Power Sources, 240, 184-192. 

[17] Kim, I. S. (2009). A technique for estimating the state of health of lithium batteries through a dual-sliding-mode 

observer. IEEE Transactions on Power Electronics, 25(4), 1013-1022. 

[18] Locorotondo, E., Pugi, L., Berzi, L., Pierini, M., & Pretto, A. (2018, June). Online State of Health Estimation of 

Lithium-Ion Batteries Based on Improved Ampere-Count Method. In 2018 IEEE International Conference on 

Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe 

(EEEIC/I&CPS Europe) (pp. 1-6). IEEE. 

[19] Lin, H. T., Liang, T. J., & Chen, S. M. (2012). Estimation of battery state of health using probabilistic neural 

network. IEEE Transactions on Industrial Informatics, 9(2), 679-685. 

[20] Lei, Y., Li, N., Guo, L., Li, N., Yan, T., & Lin, J. (2018). Machinery health prognostics: A systematic review from 

data acquisition to RUL prediction. Mechanical Systems and Signal Processing, 104, 799-834. 

https://doi.org/10.1016/j.est.2021.102566


This document is the pre-print version of the article:  

Locorotondo, E., Cultrera, V., Pugi, L., Berzi, L., Pierini, M., Lutzemberger, G., 2021. Development of a battery real-time state of 

health diagnosis based on fast impedance measurements. Journal of Energy Storage 38, 102566. 

https://doi.org/10.1016/j.est.2021.102566 

 

31 

 

[21] Khaleghi, S., Firouz, Y., Van Mierlo, J., & Van den Bossche, P. (2019). Developing a real-time data-driven battery 

health diagnosis method, using time and frequency domain condition indicators. Applied Energy, 255, 113813. 

[22] Tröltzsch, U., Kanoun, O., & Tränkler, H. R. (2006). Characterizing aging effects of lithium ion batteries by 

impedance spectroscopy. Electrochimica acta, 51(8-9), 1664-1672. 

[23] Raijmakers, L. H. J., Danilov, D. L., Van Lammeren, J. P. M., Lammers, M. J. G., & Notten, P. H. L. (2014). 

Sensorless battery temperature measurements based on electrochemical impedance spectroscopy. Journal of Power 

Sources, 247, 539-544. 

[24] Waag, W., Käbitz, S., & Sauer, D. U. (2013). Experimental investigation of the lithium-ion battery impedance 

characteristic at various conditions and aging states and its influence on the application. Applied energy, 102, 885-

897. 

[25] Nguyen, T. T., Tran, V. L., & Choi, W. (2014, June). Development of the intelligent charger with battery State-

Of-Health estimation using online impedance spectroscopy. In 2014 IEEE 23rd International Symposium on 

Industrial Electronics (ISIE) (pp. 454-458). IEEE. 

[26] Stroe, D. I., Knap, V., Swierczynski, M., & Schaltz, E. (2018). Electrochemical impedance spectroscopy-based 

electric circuit modeling of lithium–sulfur batteries during a discharging state. IEEE Transactions on Industry 

Applications, 55(1), 631-637. 

[27] Yang, H., Yoshio, M., Isono, K., & Kuramoto, R. (2002). Improvement of commercial activated carbon and its 

application in electric double layer capacitors. Electrochemical and Solid State Letters, 5(6), A141. 

[28] Escalante-García, I. L., Wainright, J. S., Thompson, L. T., & Savinell, R. F. (2014). Performance of a non-aqueous 

vanadium acetylacetonate prototype redox flow battery: examination of separators and capacity decay. Journal of 

The Electrochemical Society, 162(3), A363. 

[29] Darowicki, K., Janicka, E., Mielniczek, M., Zielinski, A., Gawel, L., Mitzel, J., & Hunger, J. (2019). The influence 

of dynamic load changes on temporary impedance in hydrogen fuel cells, selection and validation of the electrical 

equivalent circuit. Applied Energy, 251, 113396. 

https://doi.org/10.1016/j.est.2021.102566


This document is the pre-print version of the article:  

Locorotondo, E., Cultrera, V., Pugi, L., Berzi, L., Pierini, M., Lutzemberger, G., 2021. Development of a battery real-time state of 

health diagnosis based on fast impedance measurements. Journal of Energy Storage 38, 102566. 

https://doi.org/10.1016/j.est.2021.102566 

 

32 

 

[30] F. Berthier, J.P Diard, R. Michel, "Distinguishability of equivalent circuits containing CPEs: Part I. Theoretical 

part." Journal of Electroanalytical Chemistry, 510(1-2), 1-11, 2001. 

[31] Locorotondc, E., Pugi, L., Berzi, L., Pierini, M., Scavuzzc, S., Ferraris, A., ... & Carello, M. (2019, September). 

Modeling and simulation of Constant Phase Element for battery Electrochemical Impedance Spectroscopy. In 2019 

IEEE 5th International forum on Research and Technology for Society and Industry (RTSI) (pp. 225-230). IEEE. 

[32] Stroe, D. I., Swierczynski, M., Stan, A. I., Knap, V., Teodorescu, R., & Andreasen, S. J. (2014, September). 

Diagnosis of lithium-ion batteries state-of-health based on electrochemical impedance spectroscopy technique. In 

2014 IEEE Energy Conversion Congress and Exposition (ECCE) (pp. 4576-4582). IEEE 

[33] Galeotti, M., Cinà, L., Giammanco, C., Cordiner, S., & Di Carlo, A. (2015). Performance analysis and SOH (state 

of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy. Energy, 89, 

678-686. 

[34] Lyu, C., Zhang, T., Luo, W., Wei, G., Ma, B., & Wang, L. (2019, June). SOH Estimation of Lithium-ion Batteries 

Based on Fast Time Domain Impedance Spectroscopy. In 2019 14th IEEE Conference on Industrial Electronics 

and Applications (ICIEA) (pp. 2142-2147). IEEE. 

[35] De Sutter, L., Firouz, Y., De Hoog, J., Omar, N., & Van Mierlo, J. (2019). Battery aging assessment and parametric 

study of lithium-ion batteries by means of a fractional differential model. Electrochimica Acta, 305, 24-36. 

[36] Olofsson, Y., Groot, J., Katrašnik, T., & Tavčar, G. (2014, December). Impedance spectroscopy characterisation 

of automotive NMC/graphite Li-ion cells aged with realistic PHEV load profile. In 2014 IEEE International 

Electric Vehicle Conference (IEVC) (pp. 1-6). IEEE. 

[37] Wang, X., Wei, X., & Dai, H. (2019). Estimation of state of health of lithium-ion batteries based on charge transfer 

resistance considering different temperature and state of charge. Journal of Energy Storage, 21, 618-631. 

[38] Xiong, R., Tian, J., Mu, H., & Wang, C. (2017). A systematic model-based degradation behavior recognition and 

health monitoring method for lithium-ion batteries. Applied Energy, 207, 372-383. 

https://doi.org/10.1016/j.est.2021.102566


This document is the pre-print version of the article:  

Locorotondo, E., Cultrera, V., Pugi, L., Berzi, L., Pierini, M., Lutzemberger, G., 2021. Development of a battery real-time state of 

health diagnosis based on fast impedance measurements. Journal of Energy Storage 38, 102566. 

https://doi.org/10.1016/j.est.2021.102566 

 

33 

 

[39] Eddahech, A., Briat, O., & Vinassa, J. M. (2015). Performance comparison of four lithium–ion battery technologies 

under calendar aging. Energy, 84, 542-550. 

[40] Love, C. T., Virji, M. B., Rocheleau, R. E., & Swider-Lyons, K. E. (2014). State-of-health monitoring of 18650 

4S packs with a single-point impedance diagnostic. Journal of Power Sources, 266, 512-519.. 

[41] Christophersen, J. P., Morrison, J., Morrison, W., & Motloch, C. (2012). Rapid impedance spectrum measurements 

for state-of-health assessment of energy storage devices. SAE International Journal of Passenger Cars-Electronic 

and Electrical Systems, 5(2012-01-0657), 246-256. 

[42] Haußmann, P., & Melbert, J. (2017). Optimized mixed-domain signal synthesis for broadband impedance 

spectroscopy measurements on lithium ion cells for automotive applications. Journal of Sensors and Sensor 

Systems, 6(1), 65. 

[43] Relan, R., Firouz, Y., Timmermans, J. M., & Schoukens, J. (2016). Data-driven nonlinear identification of Li-ion 

battery based on a frequency domain nonparametric analysis. IEEE Transactions on Control Systems Technology, 

25(5), 1825-1832. 

[44] Sihvo, J., Stroe, D. I., Messo, T., & Roinila, T. (2019). Fast Approach for Battery Impedance Identification Using 

Pseudo-Random Sequence Signals. IEEE Transactions on Power Electronics, 35(3), 2548-2557. 

[45] Locorotondo, E., Scavuzzo, S., Pugi, L., Ferraris, A., Berzi, L., Airale, A., ... & Carello, M. (2019, June). 

Electrochemical Impedance Spectroscopy of Li-Ion battery on-board the Electric Vehicles based on Fast 

nonparametric identification method. In 2019 IEEE International Conference on Environment and Electrical 

Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1-6). 

IEEE. 

[46] Al Nazer, R., Cattin, V., Granjon, P., Montaru, M., & Ranieri, M. (2013). Broadband identification of battery 

electrical impedance for HEVs. IEEE transactions on vehicular technology, 62(7), 2896-2905. 

[47] Piret, H., Granjon, P., Guillet, N., & Cattin, V. (2016). Tracking of electrochemical impedance of batteries. Journal 

of Power Sources, 312, 60-69. 

https://doi.org/10.1016/j.est.2021.102566


This document is the pre-print version of the article:  

Locorotondo, E., Cultrera, V., Pugi, L., Berzi, L., Pierini, M., Lutzemberger, G., 2021. Development of a battery real-time state of 

health diagnosis based on fast impedance measurements. Journal of Energy Storage 38, 102566. 

https://doi.org/10.1016/j.est.2021.102566 

 

34 

 

[48] Howey, D. A., Mitcheson, P. D., Yufit, V., Offer, G. J., & Brandon, N. P. (2013). Online measurement of battery 

impedance using motor controller excitation. IEEE transactions on vehicular technology, 63(6), 2557-2566.  

[49] Serni, T., Locorotondo, E., Pugi, L., Berzi, L., Pierini, M., & Cultrera, V. (2020, June). A Low Cost Programmable 

Hardware for Online Spectroscopy of Lithium Batteries. In 2020 IEEE 20th Mediterranean Electrotechnical 

Conference (MELECON) (pp. 57-62). IEEE. 

[50] Boukamp, B. A. (1995). A linear Kronig‐Kramers transform test for immittance data validation. Journal of the 

electrochemical society, 142(6), 1885-1894. 

[51] Schönleber, M., Klotz, D., & Ivers-Tiffée, E. (2014). A method for improving the robustness of linear Kramers-

Kronig validity tests. Electrochimica Acta, 131, 20-27. 

[52] L. Ljung, ”System Identification - Theory for the User”, Prentice Hall, 1999. 

[53] Pintelon, R., & Schoukens, J. (2012). System identification: a frequency domain approach. John Wiley & Sons. 

[54] J. Silva and N. Maia, ”Modal Analysis and Testing”, Applied Science, Vol. 363, 1999. 

[55] Davies, W. D. T. (1970). System identification for self-adaptive control. Wiley Interscience, New York. 

[56] Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: a method based on time 

averaging over short, modified periodograms. IEEE Transactions on audio and electroacoustics, 15(2), 70-73. 

[57] Al Nazer, R., Cattin, V., Granjon, P., Montaru, M., Ranieri, M., & Heiries, V. (2013). Classical EIS and square 

pattern signals comparison based on a well-known reference impedance. World Electric Vehicle Journal, 6(3), 800-

806. 

[58] EIG battery official site, www.eigbattery.com 

[59] Andrenacci, N., & Sglavo, V. (2017). Stato dell'arte dei modelli di invecchiamento per le celle litio-ione. 

Applicazione al caso di studio delle celle NMC invecchiate in ENEA. Report RDS/PAR2016/163. 

 

https://doi.org/10.1016/j.est.2021.102566

