126 research outputs found

    Novel Harmonization Method for Multi-Centric Radiomic Studies in Non-Small Cell Lung Cancer

    Get PDF
    The purpose of this multi-centric work was to investigate the relationship between radiomic features extracted from pre-treatment computed tomography (CT), positron emission tomography (PET) imaging, and clinical outcomes for stereotactic body radiation therapy (SBRT) in early-stage non-small cell lung cancer (NSCLC). One-hundred and seventeen patients who received SBRT for early-stage NSCLC were retrospectively identified from seven Italian centers. The tumor was identified on pre-treatment free-breathing CT and PET images, from which we extracted 3004 quantitative radiomic features. The primary outcome was 24-month progression-free-survival (PFS) based on cancer recurrence (local/non-local) following SBRT. A harmonization technique was proposed for CT features considering lesion and contralateral healthy lung tissues using the LASSO algorithm as a feature selector. Models with harmonized CT features (B models) demonstrated better performances compared to the ones using only original CT features (C models). A linear support vector machine (SVM) with harmonized CT and PET features (A1 model) showed an area under the curve (AUC) of 0.77 (0.63-0.85) for predicting the primary outcome in an external validation cohort. The addition of clinical features did not enhance the model performance. This study provided the basis for validating our novel CT data harmonization strategy, involving delta radiomics. The harmonized radiomic models demonstrated the capability to properly predict patient prognosis

    European Council of Legal Medicine (ECLM) on-site inspection forms for forensic pathology, anthropology, odontology, genetics, entomology and toxicology for forensic and medico-legal scene and corpse investigation: the Parma form

    Get PDF
    Further to a previous publication by the European Council of Legal Medicine (ECLM) concerning on-site forensic and medico-legal scene and corpse investigation, this publication provides guidance for forensic medical specialists, pathologists and, where present, coroners’ activity at a scene of death inspection and to harmonize the procedures for a correct search, detection, collection, sampling and storage of all elements which may be useful as evidence, and ensure documentation of all these steps. This ECLM’s inspection form provides a checklist to be used on-site for the investigation of a corpse present at a crime or suspicious death scene. It permits the collection of all relevant data not only for the pathologist, but also for forensic anthropologists, odontologists, geneticists, entomologists and toxicologists, thus supporting a collaborative work approach. Detailed instructions for the completion of forms are provided

    Principles for the application of life cycle sustainability assessment

    Get PDF
    Purpose and context This paper aims to establish principles for the increased application and use of life cycle sustainability assessment (LCSA). Sustainable development (SD) encompassing resilient economies and social stability of the global system is growingly important for decision-makers from business and governments. The "17 SDGs" emerge as a high-level shared blueprint for peace, abundance, and prosperity for people and the planet, and "sustainability" for supporting improvements of products and organizations. A "sustainability" interpretation-successful in aligning stakeholders' understanding-subdivides the impacts according to a triple bottom line or three pillars: economic, social, and environmental impacts. These context and urgent needs inspired the LCSA framework. This entails a sustainability assessment of products and organizations in accordance with the three pillars, while adopting a life cycle perspective. Methods The Life Cycle Initiative promotes since 2011 a pragmatic LCSA framework based on the three techniques: LCSA = environmental life cycle assessment (LCA) + life cycle costing (LCC) + social life cycle assessment (S-LCA). This is the focus of the paper, while acknowledging previous developments. Identified and reviewed literature shows challenges of addressing the three pillars in the LCSA framework implementation like considering only two pillars; not being fully aligned with ISO 14040; lacking interconnectedness among the three pillars; not having clear criteria for results' weighting nor clear results' interpretation; and not following cause-effect chains and mechanisms leading to an endpoint. Agreement building among LCSA experts and reviewing processes strengthened the consensus on this paper. Broad support and outreach are ensured by publishing this as position paper. Results For harmonizing practical LCSA applications, easing interpretation, and increasing usefulness, consensed ten LCSA principles (10P) are established: understanding the areas of protection, alignment with ISO 14040, completeness, stakeholders' and product utility considerations, materiality of system boundaries, transparency, consistency, explicit trade-offs' communication, and caution when compensating impacts. Examples were provided based on a fictional plastic water bottle Conclusions In spite of increasing needs for and interest in SD and sustainability supporting tools, LCSA is at an early application stage of application. The 10P aim to promote more and better LCSA applications by ensuring alignment with ISO 14040, completeness and clear interpretation of integrated results, among others. For consolidating its use, however, more consensus-building is needed (e.g., on value-laden ethical aspects of LCSA, interdependencies and interconnectedness among the three dimensions, and harmonization and integration of the three techniques) and technical and policy recommendations for application.Industrial Ecolog

    LC-IMPACT: a regionalized life cycle damage assessment method

    Get PDF
    Life cycle impact assessment (LCIA) is a lively field of research, and data and models are continuously improved in terms of impact pathways covered, reliability, and spatial detail. However, many of these advancements are scattered throughout the scientific literature, making it difficult for practitioners to apply the new models. Here, we present the LC-IMPACT method that provides characterization factors at the damage level for 11 impact categories related to three areas of protection (human health, ecosystem quality, natural resources). Human health damage is quantified as disability adjusted life years, damage to ecosystem quality as global species extinction equivalents (based on potentially disappeared fraction of species), and damage to mineral resources as kilogram of extra ore extracted. Seven of the impact categories include spatial differentiation at various levels of spatial scale. The influence of value choices related to the time horizon and the level of scientific evidence of the impacts considered is quantified with four distinct sets of characterization factors. We demonstrate the applicability of the proposed method with an illustrative life cycle assessment example of different fuel options in Europe (petrol or biofuel). Differences between generic and regionalized impacts vary up to two orders of magnitude for some of the selected impact categories, highlighting the importance of spatial detail in LCIA. This article met the requirements for a gold - gold JIE data openness badge described at .Industrial Ecolog
    • …
    corecore