132 research outputs found

    Different Approaches to the Study of Apoptosis

    Get PDF
    The morphological features of cell undergoing programmed cell death is well known and has been widely described in a number of experimental models with a variety of apoptotic triggering agents. Despite the similar cell behaviour, underlying molecular events seem variable and only partially understood. A multiple approach appears crucial to better clarify the phenomenon. The first technique, DNA gel electrophoresis, allows the identification of fragmented DNA and has been long considered the hallmark of apoptosis. Different patterns of DNA cleavage, which can be identified by conventional or pulsed-field gel electrophoresis, are presented and discussed. In situ labelling methods are also described both with terminal deoxynucleotidyl transferase and DNA polymerase I, aimed at the study of the distribution of DNA cleavage areas. Flow cytometry is also proposed and different technical approaches, based on different laser utilizations, are discussed. Ultrastructural analysis, allowing the study of apoptotic cell details, is finally considered

    dysferlin in a hyperckaemic patient with caveolin 3 mutation and in c2c12 cells after p38 map kinase inhibition

    Get PDF
    Dysferlin is a plasma membrane protein of skeletal muscle whose deficiency causes Miyoshi myopathy, limb girdle muscular dystrophy 2B and distal anterior compartment myopathy. Recent studies have reported that dysferlin is implicated in membrane repair mechanism and coimmunoprecipitates with caveolin 3 in human skeletal muscle. Caveolin 3 is a principal structural protein of caveolae membrane domains in striated muscle cells and cardiac myocytes. Mutations of caveolin 3 gene (CAV3) cause different diseases and where caveolin 3 expression is defective, dysferlin localization is abnormal. We describe the alteration of dysferlin expression and localization in skeletal muscle from a patient with raised serum creatine kinase (hyperCKaemia), whose reduction of caveolin 3 is caused by a CAV3 P28L mutation. Moreover, we performed a study on dysferlin interaction with caveolin 3 in C2C12 cells. We show the association of dysferlin to cellular membrane of C2C12 myotubes and the low affinity link between dysferlin and caveolin 3 by immunoprecipitation techniques. We also reproduced caveolinopathy conditions in C2C12 cells by a selective p38 MAP kinase inhibition with SB203580, which blocks the expression of caveolin 3. In this model, myoblasts do not fuse into myotubes and we found that dysferlin expression is reduced. These results underline the importance of dysferlin-caveolin 3 relationship for skeletal muscle integrity and propose a cellular model to clarify the dysferlin alteration mechanisms in caveolinopathies

    Autophagic degradation of farnesylated prelamin A as a therapeutic approach to lamin-linked progeria

    Get PDF
    Farnesylated prelamin A is a processing intermediate produced in the lamin A maturation pathway. Accumulation of a truncated farnesylated prelamin A form, called progerin, is a hallmark of the severe premature ageing syndrome, Hutchinson-Gilford progeria. Progerin elicits toxic effects in cells, leading to chromatin damage and cellular senescence and ultimately causes skin and endothelial defects, bone resorption, lipodystrophy and accelerated ageing. Knowledge of the mechanism underlying prelamin A turnover is critical for the development of clinically effective protein inhibitors that can avoid accumulation to toxic levels without impairing lamin A/C expression, which is essential for normal biological functions. Little is known about specific molecules that may target farnesylated prelamin A to elicit protein degradation. Here, we report the discovery of rapamycin as a novel inhibitor of progerin, which dramatically and selectively decreases protein levels through a mechanism involving autophagic degradation. Rapamycin treatment of progeria cells lowers progerin, as well as wild-type prelamin A levels, and rescues the chromatin phenotype of cultured fibroblasts, including histone methylation status and BAF and LAP2α distribution patterns. Importantly, rapamycin treatment does not affect lamin C protein levels, but increases the relative expression of the prelamin A endoprotease ZMPSTE24. Thus, rapamycin, an antibiotic belonging to the class of macrolides, previously found to increase longevity in mouse models, can serve as a therapeutic tool, to eliminate progerin, avoid farnesylated prelamin A accumulation, and restore chromatin dynamics in progeroid laminopathies

    Extracellular matrix and nuclear abnormalities in skeletal muscle of a patient with Walker–Warburg syndrome caused by POMT1 mutation

    Get PDF
    AbstractWalker–Warburg syndrome (WWS) is an autosomal recessive disorder characterized by congenital muscular dystrophy, structural eye abnormalities and severe brain malformations. We performed an immunohistochemical and electron microscopy study of a muscle biopsy from a patient affected by WWS carrying a homozygous frameshift mutation in O-mannosyltransferase 1 gene (POMT1). α-Dystroglycan glycosylated epitope was not detected in muscle fibers and intramuscular peripheral nerves. Laminin α2 chain and perlecan were reduced in muscle fibers and well preserved in intramuscular peripheral nerves. The basal lamina in several muscle fibers showed discontinuities and detachment from the plasmalemma. Most nuclei, including myonuclei and satellite cell nuclei, showed detachment or complete absence of peripheral heterochromatin from the nuclear envelope. Apoptotic changes were detected in 3% of muscle fibers. The particular combination of basal lamina and nuclear changes may suggest that a complex pathogenetic mechanism, affecting several subcellular compartments, underlies the degenerative process in WWS muscle

    Failure of lamin A/C to functionally assemble in R482L mutated familial partial lipodystrophy fibroblasts: altered intermolecular interaction with emerin and implications for gene transcription

    Get PDF
    Familial partial lipodystrophy is an autosomal dominant disease caused by mutations of the LMNA gene encoding alternatively spliced lamins A and C. Abnormal distribution of body fat and insulin resistance characterize the clinical phenotype. In this study, we analyzed primary fibroblast cultures from a patient carrying an R482L lamin A/C mutation by a morphological and biochemical approach. Abnormalities were observed consisting of nuclear lamin A/C aggregates mostly localized close to the nuclear lamina. These aggregates were not bound to either DNA-containing structures or RNA splicing intranuclear compartments. In addition, emerin did not colocalize with nuclear lamin A/C aggregates. Interestingly, emerin failed to interact with lamin A in R482L mutated fibroblasts in vivo, while the interaction with lamin C was preserved in vitro, as determined by coimmunoprecipitation experiments. The presence of lamin A/C nuclear aggregates was restricted to actively transcribing cells, and it was increased in insulin-treated fibroblasts. In fibroblasts carrying lamin A/C nuclear aggregates, a reduced incorporation of bromouridine was observed, demonstrating that mutated lamin A/C in FPLD cells interferes with RNA transcription

    PO-435 Photoactivation of nanoparticles delivered by mesenchymal stem cells induces osteosarcoma cell death in in vitro 3D co-culture models

    Get PDF
    Introduction Osteosarcoma (OS) is a rare and aggressive tumour that mainly affects long bones of adolescents. Currently, OS patients are treated with a combination of multi-agent chemotherapy and surgery. However, 30% of patients do not respond to standard treatment. Therefore, innovative therapeutic agents are needed. Mesenchymal stem cells (MSCs) display a specific tumour-tropism and have been previously used in successful preclinical studies to deliver several therapeutic agents. Furthermore, the safety of genetically engineered MSCs was demonstrasted in ongoing clinical trial. The goal of the present study was to test in vitro whether MSCs could uptake photoactivable nanoparticles (NPs) and induce cell death of OS cells upon photoactivation. Material and methods Ptl@PMMA NPs were produced by adding tetrasulfonate aluminium phthalocyanine (Ptl) to an aqueous solution of positively charged poly-methylmethacrylate (PMMA) nanoparticles. The photosensitizer Ptl is activated in near-infrared light allowing a deep tissue penetration. Human MSC lines, isolated from the bone marrow of multiple donors, were loaded with Ptl@PMMA NPs. The MSCs' ability to internalise and retain NPs, along with their migratory properties, were tested. Cell death upon photoactivation (PDT) was evaluated in vitro, on a monolayer co-culture of MSCs and OS cells and in 3D multicellular spheroids, generated via cell suspension in ultralow attachment plates Results and discussions MSCs showed an internalisation rate of Plt@PMMA>95%, which did not alter cell viability and migratory capacity. When Ptl@PMMA-MSCs were co-cultured with a human OS cell line (SaOS-2) in monolayers, they efficiently triggered cell death upon PDT. In particular, AnnexinV/PI and CalceinAM/EthD staining showed 70% of cell death in the co-culture system. These results were also validated by a metabolic assay. Interestingly, in a 3D co-culture of the OS cell line MG63 and Ptl@PMMA-MSCs, we observed a marked reduction of the viability ( Conclusion For the first time, we demonstrated that photoactivation of MSCs loaded with Ptl@PMMA NPs can successfully induce OS cell death in a three-dimensional OS model. These results encourage further in vivo evaluation to demonstrate the specific targeting of Plt@PMMA loaded MSCs to the tumour stroma and the efficacy of PDT treatmen

    Rescue of heterochromatin organization in Hutchinson-Gilford progeria by drug treatment

    Get PDF
    Hutchinson-Gilford progeria (HGPS) is a premature aging syndrome associated with LMNA mutations. Progeria cells bearing the G608G LMNA mutation are characterized by accumulation of a mutated lamin A precursor (progerin), nuclear dysmorphism and chromatin disorganization. In cultured HGPS fibroblasts, we found worsening of the cellular phenotype with patient age, mainly consisting of increased nuclear-shape abnormalities, progerin accumulation and heterochromatin loss. Moreover, transcript distribution was altered in HGPS nuclei, as determined by different techniques. In the attempt to improve the cellular phenotype, we applied treatment with drugs either affecting protein farnesylation or chromatin arrangement. Our results show that the combined treatment with mevinolin and the histone deacetylase inhibitor trichostatin A dramatically lowers progerin levels, leading to rescue of heterochromatin organization and reorganization of transcripts in HGPS fibroblasts. These results suggest that morpho-functional defects of HGPS nuclei are directly related to progerin accumulation and can be rectified by drug treatment

    The Insulator Protein SU(HW) Fine-Tunes Nuclear Lamina Interactions of the Drosophila Genome

    Get PDF
    Specific interactions of the genome with the nuclear lamina (NL) are thought to assist chromosome folding inside the nucleus and to contribute to the regulation of gene expression. High-resolution mapping has recently identified hundreds of large, sharply defined lamina-associated domains (LADs) in the human genome, and suggested that the insulator protein CTCF may help to demarcate these domains. Here, we report the detailed structure of LADs in Drosophila cells, and investigate the putative roles of five insulator proteins in LAD organization. We found that the Drosophila genome is also organized in discrete LADs, which are about five times smaller than human LADs but contain on average a similar number of genes. Systematic comparison to new and published insulator binding maps shows that only SU(HW) binds preferentially at LAD borders and at specific positions inside LADs, while GAF, CTCF, BEAF-32 and DWG are mostly absent from these regions. By knockdown and overexpression studies we demonstrate that SU(HW) weakens genome – NL interactions through a local antagonistic effect, but we did not obtain evidence that it is essential for border formation. Our results provide insights into the evolution of LAD organization and identify SU(HW) as a fine-tuner of genome – NL interactions

    Discordant Gene Expression Signatures and Related Phenotypic Differences in Lamin A- and A/C-Related Hutchinson-Gilford Progeria Syndrome (HGPS)

    Get PDF
    Hutchinson-Gilford progeria syndrome (HGPS) is a genetic disorder displaying features reminiscent of premature senescence caused by germline mutations in the LMNA gene encoding lamin A and C, essential components of the nuclear lamina. By studying a family with homozygous LMNA mutation (K542N), we showed that HGPS can also be caused by mutations affecting both isoforms, lamin A and C. Here, we aimed to elucidate the molecular mechanisms underlying the pathogenesis in both, lamin A- (sporadic) and lamin A and C-related (hereditary) HGPS. For this, we performed detailed molecular studies on primary fibroblasts of hetero- and homozygous LMNA K542N mutation carriers, accompanied with clinical examinations related to the molecular findings. By assessing global gene expression we found substantial overlap in altered transcription profiles (13.7%; 90/657) in sporadic and hereditary HGPS, with 83.3% (75/90) concordant and 16.7% (15/90) discordant transcriptional changes. Among the concordant ones we observed down-regulation of TWIST2, whose inactivation in mice and humans leads to loss of subcutaneous fat and dermal appendages, and loss of expression in dermal fibroblasts and periadnexial cells from a LMNAK542N/K542N patient further confirming its pivotal role in skin development. Among the discordant transcriptional profiles we identified two key mediators of vascular calcification and bone metabolism, ENPP1 and OPG, which offer a molecular explanation for the major phenotypic differences in vascular and bone disease in sporadic and hereditary HGPS. Finally, this study correlates reduced TWIST2 and OPG expression with increased osteocalcin levels, thereby linking altered bone remodeling to energy homeostasis in hereditary HGPS
    • …
    corecore