81 research outputs found

    VEGF with AMD3100 Endogenously Mobilizes Mesenchymal Stem Cells and Improves Fracture Healing

    Get PDF
    A significant number of fractures develop non‐union. Mesenchymal stem cell (MSC) therapy may be beneficial, however, this requires cell acquisition, culture and delivery. Endogenous mobilization of stem cells offers a non‐invasive alternative. The hypothesis was administration of VEGF and the CXCR4 antagonist AMD3100 would increase the circulating pool of available MSCs and improve fracture healing. Ex‐breeder female wistar rats received VEGF followed by AMD3100, or sham PBS. Blood prepared for culture and colonies were counted. P3 cells were analyzed by flow cytometry, bi‐differentiation. The effect of mobilization on fracture healing was evaluated with 1.5 mm femoral osteotomy stabilized with an external fixator in 12–14 week old female Wistars. The mobilized group had significantly greater number of cfus/ml compared to controls, p = 0.029. The isolated cells expressed 1.8% CD34, 35% CD45, 61% CD29, 78% CD90, and differentiated into osteoblasts but not into adipocytes. The fracture gap in animals treated with VEGF and AMD3100 showed increased bone volume; 5.22 ± 1.7 µm3 and trabecular thickness 0.05 ± 0.01 µm compared with control animals (4.3 ± 3.1 µm3, 0.04 ± 0.01 µm, respectively). Radiographic scores quantifying fracture healing (RUST) showed that the animals in the mobilization group had a higher healing score compared to controls (9.6 vs. 7.7). Histologically, mobilization resulted in significantly lower group variability in bone formation (p = 0.032) and greater amounts of bone and less fibrous tissue than the control group. Clinical significance: This pre‐clinical study demonstrates a beneficial effect of endogenous MSC mobilization on fracture healing, which may have translation potential to prevent or treat clinical fractures at risk of delayed or non‐union fractures

    CXCR4 Antagonism to Treat Delayed Fracture Healing

    Get PDF
    A significant number of fractures develop non-union. Stem cell homing is regulated through SDF-1 and its receptor CXCR4. Stem/progenitor cell populations can be endogenously mobilised by administering growth factors with a pharmacological antagonist of CXCR4, AMD3100, which may be a means to improve fracture healing. Methods: A 1.5mm femoral osteotomy in Wistar rats was stabilised with an external fixator. Rats were pre-treated with PBS(P), VEGF(V), IGF-1(I) or GCSF(G) prior to AMD3100. A control group (C) did not receive growth factors or AMD3100. Bone formation after five weeks was analysed. Results: Group P had a significant increase in total bone volume (p=0.01) and group I in % bone in the fracture gap (p=0.035). Group G showed a decrease in bone volume. All treated groups had an increase in trabecular thickness. Histology showed decreased cartilage tissue associated with increased bone in groups with improved healing, and increased fibrous tissue in poorly performing groups. Conclusion: Antagonism of SDF1-CXCR4 axis can boost impaired fracture healing. AMD3100 given alone was the most effective means to boost healing whilst pre-treatment with GCSF reduced healing. AMD3100 is likely mobilizing stem cells into the blood stream that home to the fracture site enhancing healing

    Mesenchymal stem cells with increased stromal cell-derived factor 1 expression enhanced fracture healing

    Get PDF
    Treatment of critical size bone defects pose a challenge in orthopedics. Stem cell therapy together with cytokines has the potential to improve bone repair as they cause the migration and homing of stem cells to the defect site. However, the engraftment, participation, and recruitment of other cells within the regenerating tissue are important. To enhance stem cell involvement, this study investigated overexpression of stem cells with stromal cell-derived factor 1 (SDF-1) using an adenovirus. We hypothesized that these engineered cells would effectively increase the migration of native cells to the site of fracture, enhancing bone repair. Before implantation, we showed that SDF-1 secreted by transfected cells increased the migration of nontransfected cells. In a rat defect bone model, bone marrow mesenchymal stem cells overexpressing SDF-1 showed significantly (p=0.003) more new bone formation within the gap and less bone mineral loss at the area adjacent to the defect site during the early bone healing stage. In conclusion, SDF-1 was shown to play an important role in accelerating fracture repair and contributing to bone repair in rat models, by recruiting more host stem cells to the defect site and encouraging osteogenic differentiation and production of bone

    Parathyroid hormone 1-34 and skeletal anabolic action: The use of parathyroid hormone in bone formation

    Get PDF
    Intermittently administered parathyroid hormone (PTH 1-34) has been shown to promote bone formation in both human and animal studies. The hormone and its analogues stimulate both bone formation and resorption, and as such at low doses are now in clinical use for the treatment of severe osteoporosis. By varying the duration of exposure, parathyroid hormone can modulate genes leading to increased bone formation within a so-called ‘anabolic window’. The osteogenic mechanisms involved are multiple, affecting the stimulation of osteoprogenitor cells, osteoblasts, osteocytes and the stem cell niche, and ultimately leading to increased osteoblast activation, reduced osteoblast apoptosis, upregulation of Wnt/β-catenin signalling, increased stem cell mobilisation, and mediation of the RANKL/OPG pathway. Ongoing investigation into their effect on bone formation through ‘coupled’ and ‘uncoupled’ mechanisms further underlines the impact of intermittent PTH on both cortical and cancellous bone. Given the principally catabolic actions of continuous PTH, this article reviews the skeletal actions of intermittent PTH 1-34 and the mechanisms underlying its effect

    Stem Cell Interventions for Bone Healing: Fractures and Osteoporosis

    Get PDF
    With the ageing population, musculoskeletal conditions are becoming more inherent. Delayed union is defined as a slower than normal fracture healing response, with no healing after 4 to 6 months; however, union is anticipated given sufficient time. In the context of delayed/non-union, fragility fractures in osteoporotic populations carry significant patient morbidity and socioeconomic costs. Multiple mechanisms hinder fracture healing in osteoporotic patients, imbalanced bone remodelling leads to impaired bone microarchitecture due to reduced osteoblast number and activity and as such, callus formation is diminished. Since stem cells can self-renew and differentiate into various tissue lineages, they are becoming very popular in tissue regeneration in musculoskeletal conditions. In this review we discuss the role of stem cells in physiological fracture healing and their potential therapeutic use following a fracture. We explore the potential of stem cells, the release of chemokines and cytokines to reduce fracture risk in osteoporosis

    The influence of parathyroid hormone 1-34 on the osteogenic characteristics of adipose- and bone-marrow-derived mesenchymal stem cells from juvenile and ovarectomized rats

    Get PDF
    Mesenchymal stem cells (MSCs) are of growing interest in terms of bone regeneration. Most preclinical trials utilize bone-marrow-derived mesenchymal stem cells (bMSCs), although this is not without isolation and expansion difficulties. The aim of this study was: to compare the characteristics of bMSCs and adipose-derived mesenchymal stem cells (AdMSCs) from juvenile, adult, and ovarectomized (OVX) rats; and to assess the effect of human parathyroid hormone (hPTH) 1-34 on their osteogenic potential and migration to stromal cell-derived factor-1 (SDF-1)

    Effects of Soil Conservation Practices on Sediment Yield from Forest Road Ditches in Northern Iran

    Get PDF
    The fine-textured soil in forest road ditches is very susceptible to water erosion especially in rainy seasons in Hyrcanian forest. This study examined the yield of ditch segment-scale sediment after releasing two flow rates of 5 l s-1 and 10 l s-1 in segments treated by riprap (RR), grass cover by Festuca arundinacea L. (GC), compacted cotton geotextile (CG) and wooden wattle by local slash (WW). Sediment sampling from the runoff was carried out at the end of each segment every minute. Runoff flow velocity in different treatments was measured using an electromagnetic flow meter. Sediment concentration and runoff velocity in treatments of RR, GC, CG, WW was significantly lower than that of the control plot (Ctl). Increasing flow rate from 5 l s-1 to 10 l s-1 caused no significant change in sediment concentration (except for Ctl and RR) and runoff velocity (except for Ctl and CG), which means that some water might have penetrated into treated soil by RR, GC and WW and this is not acceptable in forest road maintenance practices. Sediment yield from RR (0.36 g l-1) and Ctl (0.50 g l-1) under the flow rate of 10 l s-1 was significantly higher than that of 5 l s-1 with values of 0.21 g l-1 and 0.38 g l-1, respectively. Minimum amount of sediment concentration was observed for CG (0.20 g l-1) with compacted ditch bed. Moreover, runoff velocity in CG and Ctl under the flow rate of 10 l s-1 was significantly higher than that of 5 l s-1. For a forest road with dimension 30×50 cm, slope of 5%, and clay soil with porosity of 57%, treatments of compacted CG can be used in ditch with low flow rates (5 l s-1) and high flow rate (10 l s-1) because of their high efficiency in reducing sediment yield
    corecore