252 research outputs found

    Exploring the Origins of Deuterium Enrichments in Solar Nebular Organics

    Get PDF
    Deuterium-to-hydrogen (D/H) enrichments in molecular species provide clues about their original formation environment. The organic materials in primitive solar system bodies have generally higher D/H ratios and show greater D/H variation when compared to D/H in solar system water. We propose this difference arises at least in part due to 1) the availability of additional chemical fractionation pathways for organics beyond that for water, and 2) the higher volatility of key carbon reservoirs compared to oxygen. We test this hypothesis using detailed disk models, including a sophisticated, new disk ionization treatment with a low cosmic ray ionization rate, and find that disk chemistry leads to higher deuterium enrichment in organics compared to water, helped especially by fractionation via the precursors CH2_2D+^+/CH3+_3^+. We also find that the D/H ratio in individual species varies significantly depending on their particular formation pathways. For example, from 2040\sim20-40 AU, CH4_4 can reach D/H2×103\rm{D/H\sim2\times10^{-3}}, while D/H in CH3_3OH remains locally unaltered. Finally, while the global organic D/H in our models can reproduce intermediately elevated D/H in the bulk hydrocarbon reservoir, our models are unable to reproduce the most deuterium-enriched organic materials in the solar system, and thus our model requires some inheritance from the cold interstellar medium from which the Sun formed.Comment: 11 pages, 7 figures, accepted for publication in Ap

    The ancient heritage of water ice in the solar system

    Get PDF
    Identifying the source of Earth's water is central to understanding the origins of life-fostering environments and to assessing the prevalence of such environments in space. Water throughout the solar system exhibits deuterium-to-hydrogen enrichments, a fossil relic of low-temperature, ion-derived chemistry within either (i) the parent molecular cloud or (ii) the solar nebula protoplanetary disk. Utilizing a comprehensive treatment of disk ionization, we find that ion-driven deuterium pathways are inefficient, curtailing the disk's deuterated water formation and its viability as the sole source for the solar system's water. This finding implies that if the solar system's formation was typical, abundant interstellar ices are available to all nascent planetary systems.Comment: 33 pages, 7 figures including main text and supplementary materials. Published in Scienc

    Science with an ngVLA: Observing the Effects of Chemistry on Exoplanets and Planet Formation

    Get PDF
    One of the primary mechanisms for inferring the dynamical history of planets in our Solar System and in exoplanetary systems is through observation of elemental ratios (i.e. C/O). The ability to effectively use these observations relies critically on a robust understanding of the chemistry and evolutionary history of the observed abundances. Significant efforts have been devoted to this area from within astrochemistry circles, and these efforts should be supported going forward by the larger exoplanetary science community. In addition, the construction of a next-generation radio interferometer will be required to test many of these predictive models in situ, while simultaneously providing the resolution necessary to pinpoint the location of planets in formation.Comment: To be published in the ASP Monograph Series, "Science with a Next-Generation VLA", ed. E. J. Murphy (ASP, San Francisco, CA

    The coupled physical structure of gas and dust in the IM Lup protoplanetary disk

    Get PDF
    Funding: IC gratefully acknowledges funding support from the Smithsonian Institution.The spatial distribution of gas and solids in protoplanetary disks determines the composition and formation efficiency of planetary systems. A number of disks show starkly different distributions for the gas and small grains compared to millimeter-centimeter-sized dust. We present new Atacama Large Millimeter/Submillimeter Array observations of the dust continuum, CO, 13CO, and C18O in the IM Lup protoplanetary disk, one of the first systems where this dust-gas dichotomy was clearly seen. The 12CO is detected out to a radius of 970 au, while the millimeter continuum emission is truncated at just 313 au. Based upon these data, we have built a comprehensive physical and chemical model for the disk structure, which takes into account the complex, coupled nature of the gas and dust and the interplay between the local and external environment. We constrain the distributions of gas and dust, the gas temperatures, the CO abundances, the CO optical depths, and the incident external radiation field. We find that the reduction/removal of dust from the outer disk exposes this region to higher stellar and external radiation and decreases the rate of freeze-out, allowing CO to remain in the gas out to large radial distances. We estimate a gas-phase CO abundance of 5% of the interstellar medium value and a low external radiation field (G 0 ≲ 4). The latter is consistent with that expected from the local stellar population. We additionally find tentative evidence for ring-like continuum substructure, suggestions of isotope-selective photodissociation, and a diffuse gas halo.Peer reviewe

    An ALMA Survey of H₂CO in Protoplanetary Disks

    Get PDF
    H₂CO is one of the most abundant organic molecules in protoplanetary disks and can serve as a precursor to more complex organic chemistry. We present an Atacama Large Millimeter/submillimeter Array survey of H₂CO toward 15 disks covering a range of stellar spectral types, stellar ages, and dust continuum morphologies. H₂CO is detected toward 13 disks and tentatively detected toward a fourteenth. We find both centrally peaked and centrally depressed emission morphologies, and half of the disks show ring-like structures at or beyond expected CO snowline locations. Together these morphologies suggest that H₂CO in disks is commonly produced through both gas-phase and CO-ice-regulated grain-surface chemistry. We extract disk-averaged and azimuthally-averaged H₂CO excitation temperatures and column densities for four disks with multiple H₂CO line detections. The temperatures are between 20–50 K, with the exception of colder temperatures in the DM Tau disk. These temperatures suggest that H₂CO emission in disks generally emerges from the warm molecular layer, with some contributions from the colder midplane. Applying the same H₂CO excitation temperatures to all disks in the survey, we find that H₂CO column densities span almost three orders of magnitude (~5 × 10¹¹–5 × 10¹⁴ cm⁻²). The column densities appear uncorrelated with disk size and stellar age, but Herbig Ae disks may have less H₂CO compared to T Tauri disks, possibly because of less CO freeze-out. More H₂CO observations toward Herbig Ae disks are needed to confirm this tentative trend, and to better constrain under which disk conditions H₂CO and other oxygen-bearing organics efficiently form during planet formation
    corecore