Identifying the source of Earth's water is central to understanding the
origins of life-fostering environments and to assessing the prevalence of such
environments in space. Water throughout the solar system exhibits
deuterium-to-hydrogen enrichments, a fossil relic of low-temperature,
ion-derived chemistry within either (i) the parent molecular cloud or (ii) the
solar nebula protoplanetary disk. Utilizing a comprehensive treatment of disk
ionization, we find that ion-driven deuterium pathways are inefficient,
curtailing the disk's deuterated water formation and its viability as the sole
source for the solar system's water. This finding implies that if the solar
system's formation was typical, abundant interstellar ices are available to all
nascent planetary systems.Comment: 33 pages, 7 figures including main text and supplementary materials.
Published in Scienc