19 research outputs found

    Preclinical immunogenicity and protective efficacy of a SARS-CoV-2 RBD-based vaccine produced with the thermophilic filamentous fungal expression system Thermothelomyces heterothallica C1

    Get PDF
    INTRODUCTION: The emergency use of vaccines has been the most efficient way to control the coronavirus disease 19 (COVID-19) pandemic. However, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern has reduced the efficacy of currently used vaccines. The receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein is the main target for virus neutralizing (VN) antibodies. METHODS: A SARS-CoV-2 RBD vaccine candidate was produced in the Thermothelomyces heterothallica (formerly, Myceliophthora thermophila) C1 protein expression system and coupled to a nanoparticle. Immunogenicity and efficacy of this vaccine candidate was tested using the Syrian golden hamster (Mesocricetus auratus) infection model. RESULTS: One dose of 10-μg RBD vaccine based on SARS-CoV-2 Wuhan strain, coupled to a nanoparticle in combination with aluminum hydroxide as adjuvant, efficiently induced VN antibodies and reduced viral load and lung damage upon SARS-CoV-2 challenge infection. The VN antibodies neutralized SARS-CoV-2 variants of concern: D614G, Alpha, Beta, Gamma, and Delta. DISCUSSION: Our results support the use of the Thermothelomyces heterothallica C1 protein expression system to produce recombinant vaccines against SARS-CoV-2 and other virus infections to help overcome limitations associated with the use of mammalian expression system

    An ACE2-blocking antibody confers broad neutralization and protection against Omicron and other SARS-CoV-2 variants

    Get PDF
    The ongoing evolution of SARS-CoV-2 has resulted in the emergence of Omicron, which displays striking immune escape potential. Many of its mutations localize to the spike protein ACE2 receptor-binding domain, annulling the neutralizing activity of most therapeutic monoclonal antibodies. Here we describe a receptor-blocking human monoclonal antibody, 87G7, that retains ultrapotent neutralization against SARS-CoV-2 variants including the Alpha, Beta, Gamma, Delta and Omicron (BA.1/BA.2) Variants-of-Concern (VOCs). Structural analysis reveals that 87G7 targets a patch of hydrophobic residues in the ACE2-binding site that are highly conserved in SARS-CoV-2 variants, explaining its broad neutralization capacity. 87G7 protects mice and/or hamsters against challenge with all current SARS-CoV-2 VOCs. Our findings may aid the development of sustainable antibody-based strategies against COVID-19 that are more resilient to SARS-CoV-2 antigenic diversity.The MANCO project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101003651). This work made use of the Dutch national e infrastructure with the support of the SURF Cooperative using grant no. EINF-2453. This research was funded by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) - 398066876/GRK 2485/1; BMBF (Federal Ministry of Education and Research) project entitled RAPID (Risk assessment in re-pandemic respiratory infectious diseases), 01KI1723G, Ministry of Science and Culture of Lower Saxony in Germany (14 - 76103-184 CORONA-15/20)N

    An ACE2-blocking antibody confers broad neutralization and protection against Omicron and other SARS-CoV-2 variants of concern

    Get PDF
    The ongoing evolution of SARS-CoV-2 has resulted in the emergence of Omicron, which displays striking immune escape potential through mutations at key antigenic sites on the spike protein. Many of these mutations localize to the spike protein ACE2 receptor-binding domain, annulling the neutralizing activity of therapeutic antibodies that were effective against other Variants of Concern (VOCs) earlier in the pandemic. Here, we identified a receptor-blocking human monoclonal antibody, 87G7, that retained potent in vitro neutralizing activity against SARS-CoV-2 variants including the Alpha, Beta, Gamma, Delta and Omicron (BA.1/BA.2) VOCs. Using cryo-electron microscopy and site-directed mutagenesis experiments, we showed that 87G7 targets a patch of hydrophobic residues in the ACE2-binding site that are highly conserved in SARS-CoV-2 variants, explaining its broad neutralization capacity. 87G7 protected mice and/or hamsters prophylactically against challenge with all current SARS-CoV-2 VOCs, and showed therapeutic activity against SARS-CoV-2 challenge in both animal models. Our findings demonstrate that 87G7 holds promise as a prophylactic or therapeutic agent for COVID-19 that is more resilient to SARS-CoV-2 antigenic diversity.The MANCO project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 101003651). This work made use of the Dutch national e-infrastructure with the support of the SURF Cooperative using grant no. EINF-2453. This research was funded by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation) -398066876/GRK 2485/1; BMBF (Federal Ministry of Education and Research) project entitled RAPID (Risk assessment in re-pandemic respiratory infectious diseases), 01KI1723G, Ministry of Science and Culture of Lower Saxony in Germany (14 - 76103-184 CORONA-15/20)Peer reviewe

    Early Transcriptional Differences in the Brain of Theiler’s Virus-infected Mouse Strains Reveal Delayed Antiviral Immune Responses in SJL/J mice

    No full text
    Ciurkiewicz M, Floess S, Beckstette M, et al. Early Transcriptional Differences in the Brain of Theiler’s Virus-infected Mouse Strains Reveal Delayed Antiviral Immune Responses in SJL/J mice. Journal of Comparative Pathology. 2020;174: 178

    Transkriptomanalysen in der Frühphase der Theilervirusinfektion zeigen Unterschiede in der angeborenen Immunantwort und Antigenpräsentation bei SJL- und C57BL/6-Mäusen

    No full text
    Ciurkiewicz M, Floess S, Beckstette M, et al. Transkriptomanalysen in der Frühphase der Theilervirusinfektion zeigen Unterschiede in der angeborenen Immunantwort und Antigenpräsentation bei SJL- und C57BL/6-Mäusen. In: 63. Jahrestagung der Fachgruppe Pathologie der Deutschen Veterinärmedizinischen Gesellschaft. Tierärztliche Praxis Ausgabe K: Kleintiere / Heimtiere. Vol 48. Stuttgart: Georg Thieme Verlag; 2020: 220

    Neurotoxic potential of reactive astrocytes in canine distemper demyelinating leukoencephalitis

    Get PDF
    Canine distemper virus (CDV) causes a fatal demyelinating leukoencephalitis in young dogs resembling human multiple sclerosis. Astrocytes are the main cellular target of CDV and undergo reactive changes already in pre-demyelinating brain lesions. Based on their broad range of beneficial and detrimental effects in the injured brain reactive astrogliosis is in need of intensive investigation. The aim of the study was to characterize astrocyte plasticity during the course of CDV-induced demyelinating leukoencephalitis by the aid of immunohistochemistry, immunofluorescence and gene expression analysis. Immunohistochemistry revealed the presence of reactive glial fibrillary acidic protein (GFAP)+ astrocytes with increased survivin and reduced aquaporin 4, and glutamine synthetase protein levels, indicating disturbed blood brain barrier function, glutamate homeostasis and astrocyte maladaptation, respectively. Gene expression analysis revealed 81 differentially expressed astrocyte-related genes with a dominance of genes associated with neurotoxic A1-polarized astrocytes. Accordingly, acyl-coA synthetase long-chain family member 5+/GFAP+, and serglycin+/GFAP+ cells, characteristic of A1-astrocytes, were found in demyelinating lesions by immunofluorescence. In addition, gene expression revealed a dysregulation of astrocytic function including disturbed glutamate homeostasis and altered immune function. Observed findings indicate an astrocyte polarization towards a neurotoxic phenotype likely contributing to lesion initiation and progression in canine distemper leukoencephalitis

    Middle East respiratory syndrome coronavirus infection in camelids

    No full text
    Middle East respiratory syndrome coronavirus (MERS-CoV) is the cause of a severe respiratory disease with a high case fatality rate in humans. Since its emergence in mid-2012, 2578 laboratory-confirmed cases in 27 countries have been reported by the World Health Organization, leading to 888 known deaths due to the disease and related complications. Dromedary camels are considered the major reservoir host for this virus leading to zoonotic infection in humans. Dromedary camels, llamas, and alpacas are susceptible to MERS-CoV, developing a mild-to-moderate upper respiratory tract infection characterized by epithelial hyperplasia as well as infiltration of neutrophils, lymphocytes, and some macrophages within epithelium, lamina propria, in association with abundant viral antigen. The very mild lesions in the lower respiratory tract of these camelids correlate with absence of overt illness following MERS-CoV infection. Unfortunately, there is no approved antiviral treatment or vaccine for MERS-CoV infection in humans. Thus, there is an urgent need to develop intervention strategies in camelids, such as vaccination, to minimize virus spillover to humans. Therefore, the development of camelid models of MERS-CoV infection is key not only to assess vaccine prototypes but also to understand the biologic mechanisms by which the infection can be naturally controlled in these reservoir species. This review summarizes information on virus-induced pathological changes, pathogenesis, viral epidemiology, and control strategies in camelids, as the intermediate hosts and primary source of MERS-CoV infection in humans

    Middle East respiratory syndrome coronavirus infection in camelids

    No full text
    Middle East respiratory syndrome coronavirus (MERS-CoV) is the cause of a severe respiratory disease with a high case fatality rate in humans. Since its emergence in mid-2012, 2578 laboratory-confirmed cases in 27 countries have been reported by the World Health Organization, leading to 888 known deaths due to the disease and related complications. Dromedary camels are considered the major reservoir host for this virus leading to zoonotic infection in humans. Dromedary camels, llamas, and alpacas are susceptible to MERS-CoV, developing a mild-to-moderate upper respiratory tract infection characterized by epithelial hyperplasia as well as infiltration of neutrophils, lymphocytes, and some macrophages within epithelium, lamina propria, in association with abundant viral antigen. The very mild lesions in the lower respiratory tract of these camelids correlate with absence of overt illness following MERS-CoV infection. Unfortunately, there is no approved antiviral treatment or vaccine for MERS-CoV infection in humans. Thus, there is an urgent need to develop intervention strategies in camelids, such as vaccination, to minimize virus spillover to humans. Therefore, the development of camelid models of MERS-CoV infection is key not only to assess vaccine prototypes but also to understand the biologic mechanisms by which the infection can be naturally controlled in these reservoir species. This review summarizes information on virus-induced pathological changes, pathogenesis, viral epidemiology, and control strategies in camelids, as the intermediate hosts and primary source of MERS-CoV infection in humans

    Filamentous fungus-produced human monoclonal antibody provides protection against SARS-CoV-2 in hamster and non-human primate models

    Get PDF
    Monoclonal antibodies are an increasingly important tool for prophylaxis and treatment of acute virus infections like SARS-CoV-2 infection. However, their use is often restricted due to the time required for development, variable yields and high production costs, as well as the need for adaptation to newly emerging virus variants. Here we use the genetically modified filamentous fungus expression system Thermothelomyces heterothallica (C1), which has a naturally high biosynthesis capacity for secretory enzymes and other proteins, to produce a human monoclonal IgG1 antibody (HuMab 87G7) that neutralises the SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron. Both the mammalian cell and C1 produced HuMab 87G7 broadly neutralise SARS-CoV-2 VOCs in vitro and also provide protection against VOC Omicron in hamsters. The C1 produced HuMab 87G7 is also able to protect against the Delta VOC in non-human primates. In summary, these findings show that the C1 expression system is a promising technology platform for the development of HuMabs in preventive and therapeutic medicine.</p
    corecore