19 research outputs found

    GNSS antenna pattern prediction and placement optimization: a prototype method using machine learning to aid complex electromagnetic simulations validated on a vehicle model

    Get PDF
    Patent PCT/IB2022/053002—‘Method for Determining the Correct Placement of an Antenna with Radiation Pattern Prediction’ was originated from the work reported in this manuscript.An antenna’s radiation pattern is dependent on its geometrical characteristics and its antenna’s surroundings, materials, and geometries. As such, to predict the antenna’s performance in complex environments, such as that of small antennas on large vehicles, it is necessary to obtain a model that represents such a full scenario, so that the simulation may be accomplished in the process of antenna design and placement. Due to the complex and electrically large nature of some electromagnetic problems, the detailed representation, even for a simplified model, may imply a large computational effort, both in terms of time and memory, is needed to perform the simulation. This paper evaluates how machine learning models can be used to mitigate the computational effort required to predict the behavior of antennas requiring complex modeling. It is proposed to start from a more simplified model of the electromagnetic structure to obtain a prediction for the correct solution, without needing to simulate the full structure in every iteration, and to combine this with prediction algorithms to obtain the solution of the full problem. The proposed solution uses convolutional neural networks (U-Net) of a certain accuracy to help with the correct placement of small antennas on autonomous vehicles. The standard approach requires the simulation of a full model at each test position, requiring high computational time and memory. With this new proposal, it is possible to analyze more positions and radiation patterns in a much shorter time, and with less memory, when compared with the solution from the full model. Along with this methodology for each simulation, a Bayesian optimizer is proposed to improve the search process for the best location, leading to a reduction in the required steps. This methodology was applied to support the correct positioning of a GNSS antenna with reference to a set of performance indicators required for autonomous vehicles, but it can be also applied to larger and more complex structures, allowing one to reduce the simulation time of a large electromagnetic structure and the search time for the optimum location.This work is supported by: European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) (Project number 037902; Funding Reference: POCI-01-0247-FEDER-037902)

    Caracterização das Propriedades de Referência do Projeto Arroz Cachinho: Sistema Convencional (Propriedade de Referência 1)

    Get PDF
    bitstream/item/137807/1/Felippini-R-1-Comunicado-323.pd

    Programa de controle do capim-annoni no Parque Eólico Cerro Chato: diagnóstico e proposições.

    Get PDF
    Características da invasora e interação com a pastagem natural; A invasão na área de abrangência dos parques eólicos; Adequação do sistema viário para transporte e instalação de aerogeradores; Monitoramento e mapeamento das áreas invadidas nos Parques Eólicos; Percepção do público quanto à invasãobitstream/item/136927/1/Dt-146-online.pd

    SarcTrack: an adaptable software tool for efficient large-scale analysis of sarcomere function in hiPSC-cardiomyocytes

    Get PDF
    Rationale: Human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) in combination with CRISPR/Cas9 genome editing provide unparalleled opportunities to study cardiac biology and disease. However, sarcomeres, the fundamental units of myocyte contraction, are immature and nonlinear in hiPSC-CMs, which technically challenge accurate functional interrogation of contractile parameters in beating cells. Furthermore, existing analysis methods are relatively low-throughput, indirectly assess contractility, or only assess well-aligned sarcomeres found in mature cardiac tissues. Objective: We aimed to develop an analysis platform that directly, rapidly, and automatically tracks sarcomeres in beating cardiomyocytes. The platform should assess sarcomere content, contraction and relaxation parameters, and beat rate. Methods and Results: We developed SarcTrack, a MatLab software that monitors fluorescently tagged sarcomeres in hiPSC-CMs. The algorithm determines sarcomere content, sarcomere length, and returns rates of sarcomere contraction and relaxation. By rapid measurement of hundreds of sarcomeres in each hiPSC-CM, SarcTrack provides large data sets for robust statistical analyses of multiple contractile parameters. We validated SarcTrack by analyzing drug-treated hiPSC-CMs, confirming the contractility effects of compounds that directly activate (CK-1827452) or inhibit (MYK-461) myosin molecules or indirectly alter contractility (verapamil and propranolol). SarcTrack analysis of hiPSC-CMs carrying a heterozygous truncation variant in the myosin-binding protein C (MYBPC3) gene, which causes hypertrophic cardiomyopathy, recapitulated seminal disease phenotypes including cardiac hypercontractility and diminished relaxation, abnormalities that normalized with MYK-461 treatment. Conclusions: SarcTrack provides a direct and efficient method to quantitatively assess sarcomere function. By improving existing contractility analysis methods and overcoming technical challenges associated with functional evaluation of hiPSC-CMs, SarcTrack enhances translational prospects for sarcomere-regulating therapeutics and accelerates interrogation of human cardiac genetic variants

    Multiple Reflection Symmetry Detection via Linear-Directional Kernel Density Estimation

    Get PDF
    Symmetry is an important composition feature by investigating similar sides inside an image plane. It has a crucial effect to recognize man-made or nature objects within the universe. Recent symmetry detection approaches used a smoothing kernel over different voting maps in the polar coordinate system to detect symmetry peaks, which split the regions of symmetry axis candidates in inefficient way. We propose a reliable voting representation based on weighted linear-directional kernel density estimation, to detect multiple symmetries over challenging real-world and synthetic images. Experimental evaluation on two public datasets demonstrates the superior performance of the proposed algorithm to detect global symmetry axes respect to the major image shapes

    GNSS Antenna Pattern Prediction and Placement Optimization: A Prototype Method Using Machine Learning to Aid Complex Electromagnetic Simulations Validated on a Vehicle Model

    No full text
    An antenna’s radiation pattern is dependent on its geometrical characteristics and its antenna’s surroundings, materials, and geometries. As such, to predict the antenna’s performance in complex environments, such as that of small antennas on large vehicles, it is necessary to obtain a model that represents such a full scenario, so that the simulation may be accomplished in the process of antenna design and placement. Due to the complex and electrically large nature of some electromagnetic problems, the detailed representation, even for a simplified model, may imply a large computational effort, both in terms of time and memory, is needed to perform the simulation. This paper evaluates how machine learning models can be used to mitigate the computational effort required to predict the behavior of antennas requiring complex modeling. It is proposed to start from a more simplified model of the electromagnetic structure to obtain a prediction for the correct solution, without needing to simulate the full structure in every iteration, and to combine this with prediction algorithms to obtain the solution of the full problem. The proposed solution uses convolutional neural networks (U-Net) of a certain accuracy to help with the correct placement of small antennas on autonomous vehicles. The standard approach requires the simulation of a full model at each test position, requiring high computational time and memory. With this new proposal, it is possible to analyze more positions and radiation patterns in a much shorter time, and with less memory, when compared with the solution from the full model. Along with this methodology for each simulation, a Bayesian optimizer is proposed to improve the search process for the best location, leading to a reduction in the required steps. This methodology was applied to support the correct positioning of a GNSS antenna with reference to a set of performance indicators required for autonomous vehicles, but it can be also applied to larger and more complex structures, allowing one to reduce the simulation time of a large electromagnetic structure and the search time for the optimum location
    corecore