99 research outputs found

    A novel PKC activating molecule promotes neuroblast differentiation and delivery of newborn neurons in brain injuries

    Get PDF
    Neural stem cells are activated within neurogenic niches in response to brain injuries. This results in the production of neuroblasts, which unsuccessfully attempt to migrate toward the damaged tissue. Injuries constitute a gliogenic/non-neurogenic niche generated by the presence of anti-neurogenic signals, which impair neuronal differentiation and migration. Kinases of the protein kinase C (PKC) family mediate the release of growth factors that participate in different steps of the neurogenic process, particularly, novel PKC isozymes facilitate the release of the neurogenic growth factor neuregulin. We have demonstrated herein that a plant derived diterpene, (EOF2; CAS number 2230806-06-9), with the capacity to activate PKC facilitates the release of neuregulin 1, and promotes neuroblasts differentiation and survival in cultures of subventricular zone (SVZ) isolated cells in a novel PKC dependent manner. Local infusion of this compound in mechanical cortical injuries induces neuroblast enrichment within the perilesional area, and noninvasive intranasal administration of EOF2 promotes migration of neuroblasts from the SVZ towards the injury, allowing their survival and differentiation into mature neurons, being some of them cholinergic and GABAergic. Our results elucidate the mechanism of EOF2 promoting neurogenesis in injuries and highlight the role of novel PKC isozymes as targets in brain injury regeneration

    Pacing at Accelerated Heart Rate During Echocardiography-Guided Atrioventricular Optimisation Following Cardiac Resynchronisation Therapy

    No full text
    INTRODUCTION: Although echo-guided atrioventricular optimisation (AVO) is standardly performed at rest, this approach may not provide optimal AV synchrony during daily activities. MATERIAL AND METHODS: The AVO protocol at one of two hospital campuses had been modified to be performed while pacing at an accelerated heart rate. We tested if this approach would improve the yield from AVO compared to the other campus, where AVO was performed at the intrinsic sinus rate. RESULTS: Between campuses, no significant differences were seen in demographics, chamber sizes, left ventricular ejection fraction, and diastolic function grade. Those having AVO at C2 were more likely to demonstrate fusion prone physiology (36% vs. 9%; CONCLUSIONS: When AVO was performed at an accelerated heart rate, patients with truncation-prone or fusion-prone physiology were identified more readily

    Establishing and validating a new source analysis method using phase

    Get PDF
    Electroencephalogram (EEG) measures the brain oscillatory activity non-invasively. The localization of deep brain generators of the electric fields is essential for understanding neuronal function in healthy humans and for damasking specific regions that cause abnormal activity in patients with neurological disorders. The aim of this study was to test whether the phase estimation from scalp data can be reliably used to identify the number of dipoles in source analyses. The steps performed included: i) modeling different phasic oscillatory signals using auto-regressive processes at a particular frequency, ii) simulation of two different noises, namely white and colored noise, having different signal-to-noise ratios, iii) simulation of dipoles at different areas in the brain and iv) estimation of the number of dipoles by calculating the phase differences of the simulated signals. Moreover we applied this method of source analysis on real data from temporal lobe epilepsy (TLE) patients. The analytical framework was successful in identifying the sources and their orientations in the simulated data and identified the epileptogenic area in the studied patients which was confirmed by pathological studies after TLE surgery

    An SDBD Plasma-Catalytic System for On-Demand Air Purification

    No full text

    Harnessing Slow Light in Optoelectronically Engineered Nanoporous Photonic Crystals for Visible Light-Enhanced Photocatalysis

    No full text
    Spectrally tunable nanoporous anodic alumina distributed Bragg reflectors (NAA-DBRs) are modified with titanium dioxide (TiO2) coatings via atomic layer deposition and used as model optoelectronic platforms to harness slow light for photocatalysis under visible−NIR illumination. Photocatalytic breakdown of methylene blue (MB) with a visible absorbance band is used as a benchmark reaction to unveil the mechanism of slow light-enhanced photocatalysis in TiO2−NAA-DBRs with a tunable photonic stop band (PSB) and thickness of TiO2. Assessment of the optical arrangement between MB’s absorbance band and the PSB of TiO2−NAA-DBRs is used to identify and quantify slow light contributions in driving this model photocatalytic breakdown reaction. Our findings reveal that photodegradation rates rely on both the spectral position of PSB and thickness of the semiconductor. The performance of these photocatalysts is the maximum when the red edge of the PSB is spectrally close to the red or blue boundary of the MB’s absorbance band and to dramatically decrease within the absorbance maximum of MB due to light screening by dye molecules. It is also demonstrated that TiO2−NAA-DBRs featuring thicker photoactive TiO2 layers can harvest more efficiently incident slow light by generating extra pairs of charge carriers on the semiconductor coating’s surface. The crystallographic phase of TiO2 in the functional coatings is found to be critical in determining the performance of these model photocatalyst platforms, where the anatase phase provides ∼69% higher performance over its amorphous TiO2 form. This study provides opportunities toward the development of energy-efficient photocatalysts for environmental remediation and energy generation and other optoelectronic applications.Siew Yee Lim, Carina Hedrich, Lin Jiang, Cheryl Suwen Law, Manohar Chirumamilla, Andrew D. Abell, Robert H. Blick, Robert Zierold, and Abel Santo
    corecore