390 research outputs found
Development of Atmospheric Monitoring System at Akeno Observatory for the Telescope Array Project
We have developed an atmospheric monitoring system for the Telescope Array
experiment at Akeno Observatory. It consists of a Nd:YAG laser with an
alt-azimuth shooting system and a small light receiver. This system is
installed inside an air conditioned weather-proof dome. All parts, including
the dome, laser, shooter, receiver, and optical devices are fully controlled by
a personal computer utilizing the Linux operating system.
It is now operated as a back-scattering LIDAR System. For the Telescope Array
experiment, to estimate energy reliably and to obtain the correct shower
development profile, the light transmittance in the atmosphere needs to be
calibrated with high accuracy.
Based on observational results using this monitoring system, we consider this
LIDAR to be a very powerful technique for Telescope Array experiments. The
details of this system and its atmospheric monitoring technique will be
discussed.Comment: 24 pages, 13 figures(plus 3 gif files), Published in NIM-A Vol.488,
August 200
The Optical System for the Large Size Telescope of the Cherenkov Telescope Array
The Large Size Telescope (LST) of the Cherenkov Telescope Array (CTA) is
designed to achieve a threshold energy of 20 GeV. The LST optics is composed of
one parabolic primary mirror 23 m in diameter and 28 m focal length. The
reflector dish is segmented in 198 hexagonal, 1.51 m flat to flat mirrors. The
total effective reflective area, taking into account the shadow of the
mechanical structure, is about 368 m. The mirrors have a sandwich structure
consisting of a glass sheet of 2.7 mm thickness, aluminum honeycomb of 60 mm
thickness, and another glass sheet on the rear, and have a total weight about
47 kg. The mirror surface is produced using a sputtering deposition technique
to apply a 5-layer coating, and the mirrors reach a reflectivity of 94%
at peak. The mirror facets are actively aligned during operations by an active
mirror control system, using actuators, CMOS cameras and a reference laser.
Each mirror facet carries a CMOS camera, which measures the position of the
light spot of the optical axis reference laser on the target of the telescope
camera. The two actuators and the universal joint of each mirror facet are
respectively fixed to three neighboring joints of the dish space frame, via
specially designed interface plate.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Arrival direction of successive air showers
We have studied the features of series of air shower events (AS cluster) concentrated within short intervals of time of arrival. When the number of events in the cluster reaches the maximum values in the considered data set, the arrival directions of the AS are prevailingly observed around values of right ascension α 5 h and α 20 h. These values indicate parallellism of directions between the shower directions and the galactic plane. This can be explained by the presence of Ultra-High Energy (UHE) gamma-ray sources, generating showers from their specific direction. The analysis uses three data set of 253k, 664k and 231k
events. The results are similar in the three data set
Statistical Tests as Spherical Data for Angular Distributions of Neutrinos Burst from SN 1987A
[Abstract] Using some statistical methods, many investigators have claimed on the polar angle distribution of neutrinos emitted from SN1987A that the IMB data seems to be non-isotropic distribution, whereas the Kamiokande data shows isotropic distribution. It seems unable to be explained by only ν^^-_e+p→n+e^+(capture). They, however, haven\u27t used the statistical test method of spherical distributions in which both the polar and azimuthal angles must be utilized in polar co-ordinates. Also, the azimuthal angle distribution of the IMB burst has been affected by lacks of tracks owing to failed supplying high-voltage power to a part of the PMT at the SN explosion time. Taking into account the effect of lacks of tracks and using the Rayleigh test on spherical data, we find a significance probability of 12% for a uniform distribution. Accordingly, it is concluded all events of the IMB and Kamiokande observations are not in contrast to the assumption that all events are due to ν^^-_e+p→n+e^ in accordance with standard models of supernova explosion
The Cosmic-Ray Composition between 2 PeV and 2 EeV Observed with the TALE Detector in Monocular Mode
We report on a measurement of the cosmic-ray composition by the Telescope Array Low-energy Extension (TALE) air fluorescence detector (FD). By making use of the Cherenkov light signal in addition to air fluorescence light from cosmic-ray (CR)-induced extensive air showers, the TALE FD can measure the properties of the cosmic rays with energies as low as ∼2 PeV and exceeding 1 EeV. In this paper, we present results on the measurement of distributions of showers observed over this energy range. Data collected over a period of ∼4 yr were analyzed for this study. The resulting distributions are compared to the Monte Carlo (MC) simulated data distributions for primary cosmic rays with varying composition and a four-component fit is performed. The comparison and fit are performed for energy bins, of width 0.1 or 0.2 in, spanning the full range of the measured energies. We also examine the mean value as a function of energy for cosmic rays with energies greater than 1015.8 eV. Below 1017.3 eV, the slope of the mean as a function of energy (the elongation rate) for the data is significantly smaller than that of all elements in the models, indicating that the composition is becoming heavier with energy in this energy range. This is consistent with a rigidity-dependent cutoff of events from Galactic sources. Finally, an increase in the elongation rate is observed at energies just above 1017 eV, indicating another change in the cosmic-ray composition
Mirror development for the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) is a planned observatory for very-high energy gamma-ray astronomy. It will consist of several tens of telescopes of different sizes, with a total mirror area of up to 10,000 square meters. Most mirrors of current installations are either polished glass mirrors or diamond-turned aluminium mirrors, both labour intensive technologies. For CTA, several new technologies for a fast and cost-efficient production of light-weight and reliable mirror substrates have been developed and industrial pre-production has started for most of them. In addition, new or improved aluminium-based and dielectric surface coatings have been developed to increase the reflectance over the lifetime of the mirrors compared to those of current Cherenkov telescope instruments.Fil: Forster, A.. Max-Planck-Institut fur Kernphysik; AlemaniaFil: Armstrong, T.. Durham University; Reino UnidoFil: Baba, H.. Ibaraki University; JapónFil: Bähr, J.. No especifíca;Fil: Bonardi, A.. Universitat Tübingen; AlemaniaFil: Bonnoli, G.. Osservatorio Astronomico di Brera; ItaliaFil: Brun, P.. No especifíca;Fil: Canestrari, R.. Osservatorio Astronomico di Brera; ItaliaFil: Chadwick, P.. Durham University; Reino UnidoFil: Chikawa, M.. University of Tokyo; JapónFil: Carton, P.-H.. Centre de Saclay; FranciaFil: De Souza, V.. Universidade de Sao Paulo; BrasilFil: Dipold, J.. Universidade de Sao Paulo; BrasilFil: Doro, M.. Università di Padova; ItaliaFil: Durand, D.. No especifíca;Fil: Dyrda, M.. Polish Academy of Sciences; ArgentinaFil: Giro, E.. Osservatorio Astronomico di Padova; ItaliaFil: Glicenstein, J.-F.. No especifíca;Fil: Hanabata, Y.. Kinki University; JapónFil: Hayashida, M.. University of Tokyo; JapónFil: Hrabovski, M.. No especifíca;Fil: Jeanney, C.. Centre de Saclay; FranciaFil: Kagaya, M.. Ibaraki University; JapónFil: Katagiri, H.. Ibaraki University; JapónFil: Lessio, L.. Osservatorio Astronomico di Padova; ItaliaFil: Mandat, D.. Institute of Physics of the Academy of Sciences of the Czech Republic; República ChecaFil: Mariotti, M.. Università di Padova; ItaliaFil: Medina, Maria Clementina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Yoshida, T.. Ibaraki University; Japón33rd International Cosmic Ray ConferenceRío de JaneiroBrasilBrazilian Physical Societ
The Cherenkov Telescope Array Large Size Telescope
The two arrays of the Very High Energy gamma-ray observatory Cherenkov
Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with
a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA
to achieve a low-energy threshold of 20 GeV, which is critical for important
studies in astrophysics, astroparticle physics and cosmology. This work
presents the key specifications and performance of the current LST design in
the light of the CTA scientific objectives.Comment: 4 pages, 5 figures, In Proceedings of the 33rd International Cosmic
Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at
arXiv:1307.223
Observation of variations in cosmic ray single count rates during thunderstorms and implications for large-scale electric field changes
We present the first observation by the Telescope Array Surface Detector (TASD) of the effect of thunderstorms on the development of cosmic ray single count rate intensity over a 700 km2 area. Observations of variations in the secondary low-energy cosmic ray counting rate, using the TASD, allow us to study the electric field inside thunderstorms, on a large scale, as it progresses on top of the 700 km2 detector, without dealing with the limitation of narrow exposure in time and space using balloons and aircraft detectors. In this work, variations in the cosmic ray intensity (single count rate) using the TASD, were studied and found to be on average at the ~(0.5-1)% and up to 2% level. These observations were found to be both in excess and in deficit. They were also found to be correlated with lightning in addition to thunderstorms. These variations lasted for tens of minutes; their footprint on the ground ranged from 6 km to 24 km in diameter and moved in the same direction as the thunderstorm. With the use of simple electric field models inside the cloud and between cloud to ground, the observed variations in the cosmic ray single count rate were recreated using CORSIKA simulations. Depending on the electric field model used and the direction of the electric field in that model, the electric field magnitude that reproduces the observed low-energy cosmic ray single count rate variations was found to be approximately between 0.2 GV-0.4 GV. This in turn allows us to get a reasonable insight on the electric field and its effect on cosmic ray air showers inside thunderstorms
- …