1,185 research outputs found

    Topologically confined states at corrugations of gated bilayer graphene

    Get PDF
    We investigate the electronic and transport properties of gated bilayer graphene with one corrugated layer, which results in a stacking AB/BA boundary. When a gate voltage is applied to one layer, topologically protected gap states appear at the corrugation, which reveal as robust transport channels along the stacking boundary. With increasing size of the corrugation, more localized, quantum-well-like states emerge. These finite-size states are also conductive along the fold, but in contrast to the stacking boundary states, which are gapless, they present a gap. We have also studied periodic corrugations in bilayer graphene; our findings show that such corrugations between AB- and BA-stacked regions behave as conducting channels that can be easily identified by their shape

    Interface States in Carbon Nanotube Junctions: Rolling up graphene

    Get PDF
    We study the origin of interface states in carbon nanotube intramolecular junctions between achiral tubes. By applying the Born-von Karman boundary condition to an interface between armchair- and zigzag-terminated graphene layers, we are able to explain their number and energies. We show that these interface states, costumarily attributed to the presence of topological defects, are actually related to zigzag edge states, as those of graphene zigzag nanoribbons. Spatial localization of interface states is seen to vary greatly, and may extend appreciably into either side of the junction. Our results give an alternative explanation to the unusual decay length measured for interface states of semiconductor nanotube junctions, and could be further tested by local probe spectroscopies

    Controlling the layer localization of gapless states in bilayer graphene with a gate voltage

    Get PDF
    Experiments in gated bilayer graphene with stacking domain walls present topological gapless states protected by no-valley mixing. Here we research these states under gate voltages using atomistic models, which allow us to elucidate their origin. We find that the gate potential controls the layer localization of the two states, which switches non-trivially between layers depending on the applied gate voltage magnitude. We also show how these bilayer gapless states arise from bands of single-layer graphene by analyzing the formation of carbon bonds between layers. Based on this analysis we provide a model Hamiltonian with analytical solutions, which explains the layer localization as a function of the ratio between the applied potential and interlayer hopping. Our results open a route for the manipulation of gapless states in electronic devices, analogous to the proposed writing and reading memories in topological insulators

    Bound states in the continuum: localization of Dirac-like fermions

    Full text link
    We report the formation of bound states in the continuum for Dirac-like fermions in structures composed by a trilayer graphene flake connected to nanoribbon leads. The existence of this kind of localized states can be proved by combining local density of states and electronic conductance calculations. By applying a gate voltage, the bound states couple to the continuum, yielding a maximum in the electronic transmission. This feature can be exploited to identify bound states in the continuum in graphene-based structures.Comment: 7 pages, 5 figure

    Electronic transport through bilayer graphene flakes

    Full text link
    We investigate the electronic transport properties of a bilayer graphene flake contacted by two monolayer nanoribbons. Such a finite-size bilayer flake can be built by overlapping two semiinfinite ribbons or by depositing a monolayer flake onto an infinite nanoribbon. These two structures have a complementary behavior, that we study and analyze by means of a tight-binding method and a continuum Dirac model. We have found that for certain energy ranges and geometries, the conductance of these systems oscillates markedly between zero and the maximum value of the conductance, allowing for the design of electromechanical switches. Our understanding of the electronic transmission through bilayer flakes may provide a way to measure the interlayer hopping in bilayer graphene.Comment: 11 pages, 8 figure

    Upper Airways Microbiota in Antibiotic-Naive Wheezing and Healthy Infants from the Tropics of Rural Ecuador

    Get PDF
    Background: Observations that the airway microbiome is disturbed in asthma may be confounded by the widespread use of antibiotics and inhaled steroids. We have therefore examined the oropharyngeal microbiome in early onset wheezinginfants from a rural area of tropical Ecuador where antibiotic usage is minimal and glucocorticoid usage is absent. Materials and Methods: We performed pyrosequencing of amplicons of the polymorphic bacterial 16S rRNA gene from oropharyngeal samples from 24 infants with non-infectious early onset wheezing and 24 healthy controls (average age 10.2 months). We analyzed microbial community structure and differences between cases and controls by QIIME software. Results: We obtained 76,627 high quality sequences classified into 182 operational taxonomic units (OTUs). Firmicutes was the most common and diverse phylum (71.22% of sequences) with Streptococcus being the most common genus (49.72%). Known pathogens were found significantly more often in cases of infantile wheeze compared to controls, exemplified by Haemophilus spp. (OR = 2.12, 95% Confidence Interval (CI) 1.82–2.47; P = 5.46610223) and Staphylococcus spp. (OR = 124.1, 95%CI 59.0–261.2; P = 1.876102241). Other OTUs were less common in cases than controls, notably Veillonella spp. (OR = 0.59, 95%CI = 0.56–0.62; P = 8.06610286). Discussion: The airway microbiota appeared to contain many more Streptococci than found in Western Europe and the USA. Comparisons between healthy and wheezing infants revealed a significant difference in several bacterial phylotypes that were not confounded by antibiotics or use of inhaled steroids. The increased prevalence of pathogens such as Haemophilus and Staphylococcus spp. in cases may contribute to wheezing illnesses in this age group
    corecore