4,195 research outputs found

    Poly I:C enhances cycloheximide-induced apoptosis of tumor cells through TLR3 pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Toll-like receptor 3 (TLR3) is a critical component of the innate immune response to dsRNA viruses, which was considered to be mainly expressed in immune cells and some endothelial cells. In this study, we investigated the expression and proapoptotic activity of TLR3 in human and murine tumor cell lines.</p> <p>Methods</p> <p>RT-PCR and FACS analysis were used to detect expression of TLR3 in various human and murine tumor cell lines. All tumor cell lines were cultured with poly I:C, CHX, or both for 12 h, 24 h, 72 h, and then the cell viability was analyzed with CellTiter 96<sup>® </sup>AQueous One Solution, the apoptosis was measured by FACS with Annexin V and PI staining. Production of Type I IFN in poly I:C/CHX mediated apoptosis were detected through western blotting. TLR3 antibodies and IFN-β antibodies were used in Blockade and Neutralization Assay.</p> <p>Results</p> <p>We show that TLR3 are widely expressed on human and murine tumor cell lines, and activation of TLR3 signaling in cancerous cells by poly I:C made Hela cells (human cervical cancer) and MCA38 cells (murine colon cancer) become dose-dependently sensitive to protein synthesis inhibitor cycloheximide (CHX)-induced apoptosis. Blockade of TLR3 recognition with anti-TLR3 antibody greatly attenuated the proapoptotic effects of poly I:C on tumor cells cultured with CHX. IFN-β production was induced after poly I:C/CHX treatment and neutralization of IFN-β slightly reduced poly I:C/CHX -induced apoptosis.</p> <p>Conclusion</p> <p>Our study demonstrated the proapoptotic activity of TLR3 expressed by various tumor cells, which may open a new range of clinical applications for TLR3 agonists as an adjuvant of certain cancer chemotherapy.</p

    Activated CD4+ T cells enhance radiation effect through the cooperation of interferon-γ and TNF-α

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Approaches that enhance radiation effect may lead to improved clinical outcome and decrease toxicity. Here we investigated whether activated CD4+ T cells (aCD4) can serve as an effective radiosensitizer.</p> <p>Methods</p> <p>CD4+ T cells were activated with anti-CD3 and anti-CD28 mAbs. Hela cells were presensitized with aCD4 or conditioned supernatant (aCD4S) or recombinant cytokines for 2 days, followed γ-irradiation. The treated cells were cultured for an additional 2 to 5 days for cell proliferation, cell cycle, and western blot assays. For confirmation, other cancer cell lines were also used.</p> <p>Results</p> <p>Presensitization of tumor cells with aCD4 greatly increased tumor cell growth inhibition. Soluble factors secreted from activated CD4<sup>+ </sup>T cells were primarily responsible for the observed effect. IFN-γ seemed to play a major role. TNF-α, though inactive by itself, significantly augmented the radiosensitizing activity of IFN-γ. aCD4S, but not IFN-γ or IFN-γ/TNF-α combination, was found to enhance the γ-irradiation-induced G2/M phase arrest. Bax expression was highly upregulated in Hela cells presensitized with aCD4S followed by γ-irradiation. The radio-sensitizing activity of aCD4 is not uniquely observed with Hela cell line, but also seen with other cancer cell lines of various histology.</p> <p>Conclusions</p> <p>Our findings suggest possible molecular and cellular mechanisms that may help explain the radio-sensitization effect of activated lymphocytes, and may provide an improved strategy in the treatment of cancer with radiotherapy.</p

    Analysis of genetic diversity and molecular evolution of human group B rotaviruses based on whole genome segments

    Get PDF
    Group B rotavirus (GBR) is a rare enteric pathogen that causes severe diarrhoea, primarily in adults. Nearly full-length sequences of all 11 RNA segments were determined for human GBRs detected recently in India (IDH-084 in 2007, IC-008 in 2008), Bangladesh (Bang117 in 2003) and Myanmar (MMR-B1 in 2007), and analysed phylogenetically with the sequence data of GBRs reported previously. All RNA segments of GBR strains from India, Bangladesh and Myanmar showed >95 % nucleotide sequence identities. Among the 11 RNA segments, the VP6 and NSP2 genes showed the highest identities (>98 %), whilst the lowest identities were observed in the NSP4 gene (96.1 %), NSP5 gene (95.6 %) and VP8*-encoding region of the VP4 gene (95.9 %). Divergent or conserved regions in the deduced amino acid sequences of GBR VP1–VP4 and NSP1–NSP5 were similar to those in group A rotaviruses (GARs), and the functionally important motifs and structural characteristics in viral proteins known for GAR were conserved in all of the human GBRs. These findings suggest that, whilst the degree of genetic evolution may be dependent on each RNA segment, human GBR may have been evolving in a similar manner to GAR, associated with the similar functional roles of individual viral proteins

    Tropheryma whipplei, the Whipple's disease bacillus, induces macrophage apoptosis through the extrinsic pathway

    Get PDF
    Tropheryma whipplei, the etiological agent of Whipple's disease, is an intracellular bacterium that infects macrophages. We previously showed that infection of macrophages results in M2 polarization associated with induction of apoptosis and interleukin (IL)-16 secretion. In patients with Whipple's disease, circulating levels of apoptotic markers and IL-16 are increased and correlate with the activity of the disease. To gain insight into the understanding of the pathophysiology of this rare disease, we examined the molecular pathways involved in T. whipplei-induced apoptosis of human macrophages. Our data showed that apoptosis induction depended on bacterial viability and inhibition of bacterial protein synthesis reduced the apoptotic program elicited by T. whipplei. Induction of apoptosis was also associated with a massive degradation of both pro- and anti-apoptotic mediators. Caspase-specific inhibition experiments revealed that initiator caspases 8 and 10 were required for apoptosis, in contrast to caspases 2 and 9, in spite of cytochrome-c release from mitochondria. Finally, the effector caspases 3 and 6 were mandatory for apoptosis induction. Collectively, these data suggest that T. whipplei induces apoptosis through the extrinsic pathway and that, beside M2 polarization of macrophages, apoptosis induction contributes to bacterial replication and represents a virulence trait of this intracellular pathogen

    Influenza A Virus Induces an Immediate Cytotoxic Activity in All Major Subsets of Peripheral Blood Mononuclear Cells

    Get PDF
    A replication defective influenza A vaccine virus (delNS1 virus) was developed. Its attenuation is due to potent stimulation of the innate immune system by the virus. Since the innate immune system can also target cancer cells, we reasoned that delNS1 virus induced immune-stimulation should also lead to the induction of innate cytotoxic effects towards cancer cells.Peripheral blood mononuclear cells (PBMCs), isolated CD56+, CD3+, CD14+ and CD19+ subsets and different combinations of the above subsets were stimulated by delNS1, wild type (wt) virus or heat inactivated virus and co-cultured with tumor cell lines in the presence or absence of antibodies against the interferon system. Stimulation of PBMCs by the delNS1 virus effectively induced cytotoxicity against different cancer cell lines. Surprisingly, virus induced cytotoxicity was exerted by all major subtypes of PBMCs including CD56+, CD3+, CD14+ and CD19+ cells. Virus induced cytotoxicity in CD3+, CD14+ and CD19+ cells was dependent on virus replication, whereas virus induced cytotoxicity in CD56+ cells was only dependent on the binding of the virus. Virus induced cytotoxicity of isolated cell cultures of CD14+, CD19+ or CD56+ cells could be partially blocked by antibodies against type I and type II (IFN) interferon. In contrast, virus induced cytotoxicity in the complete PBMC preparation could not be inhibited by blocking type I or type II IFN, indicating a redundant system of activation in whole blood.Our data suggest that apart from their well known specialized functions all main subsets of peripheral blood cells also initially exert a cytotoxic effect upon virus stimulation. This closely links the innate immune system to the adaptive immune response and renders delNS1 virus a potential therapeutic tool for viro-immunotherapy of cancer
    corecore