165 research outputs found
SSE Spine Tango - content, workflow, set-up: www.eurospine.org - Spine Tango
The Spine Tango registry is now accessible via the SSE webpage under www.eurospine.org - Spine Tango. Links to the Swiss/International, German and Austrian modules are provided as well as information about the philosophy, methodology and content. Following the links, the users are taken to the respective national modules for registration or log-in and data entry. The Swiss/International module, also accessible under www.spinetango.com, is used by all Swiss and international users, who do not have a separate national module. The physician administered forms for surgery, staged surgery and follow-up can be downloaded as PDFs.The officially recommended Spine Tango patient forms are also available. All forms were implemented in an online version and as scannable optical mark reader forms which can be ordered from the corresponding autho
The energy budget in Rayleigh-Benard convection
It is shown using three series of Rayleigh number simulations of varying
aspect ratio AR and Prandtl number Pr that the normalized dissipation at the
wall, while significantly greater than 1, approaches a constant dependent upon
AR and Pr. It is also found that the peak velocity, not the mean square
velocity, obeys the experimental scaling of Ra^{0.5}. The scaling of the mean
square velocity is closer to Ra^{0.46}, which is shown to be consistent with
experimental measurements and the numerical results for the scaling of Nu and
the temperature if there are strong correlations between the velocity and
temperature.Comment: 5 pages, 3 figures, new version 13 Mar, 200
Cavitation pressure in liquid helium
Recent experiments have suggested that, at low enough temperature, the
homogeneous nucleation of bubbles occurs in liquid helium near the calculated
spinodal limit. This was done in pure superfluid helium 4 and in pure normal
liquid helium 3. However, in such experiments, where the negative pressure is
produced by focusing an acoustic wave in the bulk liquid, the local amplitude
of the instantaneous pressure or density is not directly measurable. In this
article, we present a series of measurements as a function of the static
pressure in the experimental cell. They allowed us to obtain an upper bound for
the cavitation pressure P_cav (at low temperature, P_cav < -2.4 bar in helium
3, P_cav < -8.0 bar in helium 4). From a more precise study of the acoustic
transducer characteristics, we also obtained a lower bound (at low temperature,
P_cav > -3.0 bar in helium 3, P_cav > - 10.4 bar in helium 4). In this article
we thus present quantitative evidence that cavitation occurs at low temperature
near the calculated spinodal limit (-3.1 bar in helium 3 and -9.5 bar in helium
4). Further information is also obtained on the comparison between the two
helium isotopes. We finally discuss the magnitude of nonlinear effects in the
focusing of a sound wave in liquid helium, where the pressure dependence of the
compressibility is large.Comment: 11 pages, 9 figure
Cavitation of Electrons Bubbles in Liquid Helium Below saturation Pressure
We have used a Hartree-type electron-helium potential together with a density
functional description of liquid He and He to study the explosion of
electron bubbles submitted to a negative pressure. The critical pressure at
which bubbles explode has been determined as a function of temperature. It has
been found that this critical pressure is very close to the pressure at which
liquid helium becomes globally unstable in the presence of electrons. It is
shown that at high temperatures the capillary model overestimates the critical
pressures. We have checked that a commonly used and rather simple
electron-helium interaction yields results very similar to those obtained using
the more accurate Hartree-type interaction. We have estimated that the
crossover temperature for thermal to quantum nucleation of electron bubbles is
very low, of the order of 6 mK for He.Comment: 22 pages, 9 figure
A novel soft cardiac assist device based on a dielectric elastomer augmented aorta: an in vivo study
Although heart transplant is the preferred solution for patients suffering from heart failures, cardiac assist devices remain key substitute therapies. Among them, aortic augmentation using dielectric elastomer actuators (DEAs) might be an alternative technological application for the future. The electrically driven actuator does not require bulky pneumatic elements (such as conventional intra-aortic balloon pumps) and conforms tightly to the aorta thanks to the manufacturing method presented here. In this study, the proposed DEA-based device replaces a section of the aorta and acts as a counterpulsation device. The feasibility and validation of in vivo implantation of the device into the descending aorta in a porcine model, and the level of support provided to the heart are investigated. Additionally, the influence of the activation profile and delay compared to the start of systole is studied. We demonstrate that an activation of the DEA just before the start of systole (30 ms at 100 bpm) and deactivation just after the start of diastole (0-30 ms) leads to an optimal assistance of the heart with a maximum energy provided by the DEA. The end-diastolic and left ventricular pressures were lowered by up to 5% and 1%, respectively, compared to baseline. The early diastolic pressure was augmented in average by up to 2%
Wall roughness induces asymptotic ultimate turbulence
Turbulence is omnipresent in Nature and technology, governing the transport
of heat, mass, and momentum on multiple scales. For real-world applications of
wall-bounded turbulence, the underlying surfaces are virtually always rough;
yet characterizing and understanding the effects of wall roughness for
turbulence remains a challenge, especially for rotating and thermally driven
turbulence. By combining extensive experiments and numerical simulations, here,
taking as example the paradigmatic Taylor-Couette system (the closed flow
between two independently rotating coaxial cylinders), we show how wall
roughness greatly enhances the overall transport properties and the
corresponding scaling exponents. If only one of the walls is rough, we reveal
that the bulk velocity is slaved to the rough side, due to the much stronger
coupling to that wall by the detaching flow structures. If both walls are
rough, the viscosity dependence is thoroughly eliminated in the boundary layers
and we thus achieve asymptotic ultimate turbulence, i.e. the upper limit of
transport, whose existence had been predicted by Robert Kraichnan in 1962
(Phys. Fluids {\bf 5}, 1374 (1962)) and in which the scalings laws can be
extrapolated to arbitrarily large Reynolds numbers
Somali Current rings in the eastern Gulf of Aden
Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): C09039, doi:10.1029/2005JC003338.New satellite-based observations reveal that westward translating anticyclonic rings are generated as a portion of the Somali Current accelerates northward through the Socotra Passage near the mouth of the Gulf of Aden. Rings thus formed exhibit azimuthal geostrophic velocities exceeding 50 cm/s, are comparable in overall diameter to the width of the Gulf of Aden (250 km), and translate westward into the gulf at 5–8 cm/s. Ring generation is most notable in satellite ocean color imagery in November immediately following the transition between southwest (boreal summer) and northeast (winter) monsoon regimes. The observed rings contain anomalous fluid within their core which reflects their origin in the equator-crossing Somali Current system. Estimates of Socotra Passage flow variability derived from satellite altimetry provide evidence for a similar ring generation process in May following the winter-to-summer monsoon transition. Cyclonic recirculation eddies are observed to spin up on the eastern flank of newly formed rings with the resulting vortex pair translating westward together. Recent shipboard and Lagrangian observations indicate that vortices of both sign have substantial vertical extent and may dominate the lateral circulation at all depths in the eastern Gulf of Aden.This investigation is a component of the
Red Sea Outflow Experiment (REDSOX) sponsored by the U.S. National
Science Foundation through grants OCE 98-18464 and OCE 04-24647 to
the Woods Hole Oceanographic Institution and OCE 98-19506 and OCE
03-51116 to the University of Miami
The unpredictable nature of internal tides on continental shelves
Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 1981–2000, doi:10.1175/JPO-D-12-028.1.Packets of nonlinear internal waves (NLIWs) in a small area of the Mid-Atlantic Bight were 10 times more energetic during a local neap tide than during the preceding spring tide. This counterintuitive result cannot be explained if the waves are generated near the shelf break by the local barotropic tide since changes in shelfbreak stratification explain only a small fraction of the variability in barotropic to baroclinic conversion. Instead, this study suggests that the occurrence of strong NLIWs was caused by the shoaling of distantly generated internal tides with amplitudes that are uncorrelated with the local spring-neap cycle. An extensive set of moored observations show that NLIWs are correlated with the internal tide but uncorrelated with barotropic tide. Using harmonic analysis of a 40-day record, this study associates steady-phase motions at the shelf break with waves generated by the local barotropic tide and variable-phase motions with the shoaling of distantly generated internal tides. The dual sources of internal tide energy (local or remote) mean that shelf internal tides and NLIWs will be predictable with a local model only if the locally generated internal tides are significantly stronger than shoaling internal tides. Since the depth-integrated internal tide energy in the open ocean can greatly exceed that on the shelf, it is likely that shoaling internal tides control the energetics on shelves that are directly exposed to the open ocean.This research was supported by ONR
Grants N00014-05-1-0271, N00014-08-1-0991, N00014-04-
1-0146, and N00014-11-1-0194.2013-05-0
- …