2,295 research outputs found

    Anisotropy Control in Photoelectron Spectra: A Coherent Two-Pulse Interference Strategy

    Full text link
    Coherence among rotational ion channels during photoionization is exploited to control the anisotropy of the resulting photoelectron angular distributions at specific photoelectron energies. The strategy refers to a robust and single parameter control using two ultra-short light pulses delayed in time. The first pulse prepares a superposition of a few ion rotational states, whereas the second pulse serves as a probe that gives access to a control of the molecular asymmetry parameter β\beta for individual rotational channels. This is achieved by tuning the time delay between the pulses leading to channel interferences that can be turned from constructive to destructive. The illustrative example is the ionization of the E(1Σg+)E(1\Sigma_{g}^{+}) state of Li2_{2}. Quantum wave packet evolutions are conducted including both electronic and nuclear degrees of freedom to reach angle-resolved photoelectron spectra. A simple interference model based on coherent phase accumulation during the field-free dynamics between the two pulses is precisely exploited to control the photoelectron angular distributions from almost isotropic, to marked anisotropic

    Controlled deflection of cold atomic clouds and of Bose-Einstein condensates

    Full text link
    We present a detailed, realistic proposal and analysis of the implementation of a cold atom deflector using time-dependent far off-resonance optical guides. An analytical model and numerical simulations are used to illustrate its characteristics when applied to both non-degenerate atomic ensembles and to Bose-Einstein condensates. Using for all relevant parameters values that are achieved with present technology, we show that it is possible to deflect almost entirely an ensemble of 87^{87}Rb atoms falling in the gravity field. We discuss the limits of this proposal, and illustrate its robustness against non-adiabatic transitions

    Phase information revealed by interferences in the ionization of rotational wavepackets

    Get PDF
    Time-resolved photoelectron spectra are proposed for the measurement of classical information recorded in the quantum phases of a molecular rotational wavepacket. Taking Li2 as a prototypical system, we show that an interference arises from the electron-nuclei entanglement induced by the molecular anisotropy. This phenomenon is used to transfer the information which has been stored initially in the nuclear rotational degree of freedom into the electronic degree of freedom

    Virtual versus Face-to-Face Cognitive Behavioral Treatment of Depression: Meta-Analytic Test of a Noninferiority Hypothesis and Men’s Mental Health Inequities

    Get PDF
    Global rates of depression have increased significantly since the beginning of the COVID-19 pandemic. It is unclear how the recent shift of many mental health services to virtual platforms has impacted service users, especially for the male population which are significantly more likely to complete suicide than women. This paper presents the findings of a rapid meta-analytic research synthesis of 17 randomized controlled trials on the relative efficacy of virtual versus traditional face-to-face cognitive behavioral therapy (CBT) in mitigating symptoms of depression. Participants’ aggregated depression scores were compared upon completion of the therapy (posttest) and longest follow-up measurement. The results supported the noninferiority hypothesis indicating that the two modes of CBT delivery are equally efficacious, but the results proved to be significantly heterogeneous indicating the presence of moderating effects. Indirect suggestive evidence was found to support moderation by gender; that is, depressed males may benefit more from virtual CBT. Perhaps, this field’s most telling descriptive finding was that boys/men have been grossly underrepresented in its trials. Future trials ought to oversample those who have been at this field’s margins to advance the next generation of knowledge, allowing us to best serve people of all genders, those who live in poverty, Indigenous, Black, and other Peoples of Colour, as well as any others at risk of being marginalized or oppressed in contemporary mental health care systems

    Ultrafast electro-nuclear dynamics of H2 double ionization

    Get PDF
    The ultrafast electronic and nuclear dynamics of H2 laser-induced double ionization is studied using a time-dependent wave packet approach that goes beyond the fixed nuclei approximation. The double ionization pathways are analyzed by following the evolution of the total wave function during and after the pulse. The rescattering of the first ionized electron produces a coherent superposition of excited molecular states which presents a pronounced transient H+H- character. This attosecond excitation is followed by field-induced double ionization and by the formation of short-lived autoionizing states which decay via double ionization. These two double ionization mechanisms may be identified by their signature imprinted in the kinetic-energy distribution of the ejected protons

    Ultrafast Molecular Imaging by Laser Induced Electron Diffraction

    Get PDF
    We address the feasibility of imaging geometric and orbital structure of a polyatomic molecule on an attosecond time-scale using the laser induced electron diffraction (LIED) technique. We present numerical results for the highest molecular orbitals of the CO2 molecule excited by a near infrared few-cycle laser pulse. The molecular geometry (bond-lengths) is determined within 3% of accuracy from a diffraction pattern which also reflects the nodal properties of the initial molecular orbital. Robustness of the structure determination is discussed with respect to vibrational and rotational motions with a complete interpretation of the laser-induced mechanisms

    Laser induced electron diffraction: a tool for molecular orbital imaging

    Full text link
    We explore the laser-induced ionization dynamics of N2 and CO2 molecules subjected to a few-cycle, linearly polarized, 800\,nm laser pulse using effective two-dimensional single active electron time-dependent quantum simulations. We show that the electron recollision process taking place after an initial tunnel ionization stage results in quantum interference patterns in the energy resolved photo-electron signals. If the molecule is initially aligned perpendicular to the field polarization, the position and relative heights of the associated fringes can be related to the molecular geometrical and orbital structure, using a simple inversion algorithm which takes into account the symmetry of the initial molecular orbital from which the ionized electron is produced. We show that it is possible to extract inter-atomic distances in the molecule from an averaged photon-electron signal with an accuracy of a few percents

    A hybrid metal/semiconductor electron pump for quantum metrology

    Full text link
    Electron pumps capable of delivering a current higher than 100pA with sufficient accuracy are likely to become the direct mise en pratique of the possible new quantum definition of the ampere. Furthermore, they are essential for closing the quantum metrological triangle experiment which tests for possible corrections to the quantum relations linking e and h, the electron charge and the Planck constant, to voltage, resistance and current. We present here single-island hybrid metal/semiconductor transistor pumps which combine the simplicity and efficiency of Coulomb blockade in metals with the unsurpassed performances of silicon switches. Robust and simple pumping at 650MHz and 0.5K is demonstrated. The pumped current obtained over a voltage bias range of 1.4mV corresponds to a relative deviation of 5e-4 from the calculated value, well within the 1.5e-3 uncertainty of the measurement setup. Multi-charge pumping can be performed. The simple design fully integrated in an industrial CMOS process makes it an ideal candidate for national measurement institutes to realize and share a future quantum ampere
    corecore