86 research outputs found

    Accuracy-enhanced solar resource maps of South Africa

    Get PDF
    Paper presented to the 3rd Southern African Solar Energy Conference, South Africa, 11-13 May, 2015.SolarGIS is a global database of solar resource and meteorological parameters, developed and operated by GeoModel Solar. This database is updated daily by real-time satellite, atmospheric and meteorological data inputs. The aim of presented work was accuracy enhancement of solar resource data for South Africa, Lesotho and Swaziland. This was achieved by regional adaptation of SolarGIS solar model with data measured at fourteen high-standard solar measuring stations sourced by Eskom, GeoSUN Africa, SAURAN, STERG and Ripasso Energy. The accuracy-enhancement procedure is based on correlation of the ground measurements with the satellite-based SolarGIS model and determination of correction coefficients for model inputs. Use of these coefficients reduced systematic deviation of the input aerosol data, which is key factor determining the model accuracy in Southern Africa. The user uncertainty of the longterm estimate based on adapted data is in the range of ±5% to ±7.5% for DNI, and ±3% to ±4% for GHI. The model now delivers more accurate high-resolution solar resource time series, which helps reducing financial risk and improving engineering quality of the solar power plants. The presented maps show longterm yearly averages of Direct Normal Irradiation (DNI) and Global Horizontal Irradiation (GHI) with 1-km spatial resolution. They are calculated by aggregation of sub-hourly modeled time series, representing a period 1994 to 2013. The maps are accessible from http://www.sauran.net/. High resolution data can be accessed from http://solargis.info.cf201

    There is no simple model of the plasma membrane organizationyy

    Get PDF
    Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure

    Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore

    Get PDF
    Arginine-rich cell-penetrating peptides do not enter cells by directly passing through a lipid membrane; they instead passively enter vesicles and live cells by inducing membrane multilamellarity and fusion. The molecular picture of this penetration mode, which differs qualitatively from the previously proposed direct mechanism, is provided by molecular dynamics simulations. The kinetics of vesicle agglomeration and fusion by an iconic cell-penetrating peptide-nonaarginine-are documented via real-time fluorescence techniques, while the induction of multilamellar phases in vesicles and live cells is demonstrated by a combination of electron and fluorescence microscopies. This concert of experiments and simulations reveals that the identified passive cell penetration mechanism bears analogy to vesicle fusion induced by calcium ions, indicating that the two processes may share a common mechanistic origin.Peer reviewe

    A Density-Dependent Switch Drives Stochastic Clustering and Polarization of Signaling Molecules

    Get PDF
    Positive feedback plays a key role in the ability of signaling molecules to form highly localized clusters in the membrane or cytosol of cells. Such clustering can occur in the absence of localizing mechanisms such as pre-existing spatial cues, diffusional barriers, or molecular cross-linking. What prevents positive feedback from amplifying inevitable biological noise when an un-clustered “off” state is desired? And, what limits the spread of clusters when an “on” state is desired? Here, we show that a minimal positive feedback circuit provides the general principle for both suppressing and amplifying noise: below a critical density of signaling molecules, clustering switches off; above this threshold, highly localized clusters are recurrently generated. Clustering occurs only in the stochastic regime, suggesting that finite sizes of molecular populations cannot be ignored in signal transduction networks. The emergence of a dominant cluster for finite numbers of molecules is partly a phenomenon of random sampling, analogous to the fixation or loss of neutral mutations in finite populations. We refer to our model as the “neutral drift polarity model.” Regulating the density of signaling molecules provides a simple mechanism for a positive feedback circuit to robustly switch between clustered and un-clustered states. The intrinsic ability of positive feedback both to create and suppress clustering is a general mechanism that could operate within diverse biological networks to create dynamic spatial organization

    近世の流通システムと産業組織:宿駅と酒造業の経済的機能に関する考察

    Get PDF

    Typical Meteorological Year Data: SolarGIS Approach

    No full text

    Soluble MHC-peptide complexes induce rapid death of CD8+ CTL.

    Get PDF
    Soluble MHC-peptide (pMHC) complexes, commonly referred to as tetramers, are widely used to enumerate and to isolate Ag-specific CD8(+) CTL. It has been noted that such complexes, as well as microsphere- or cell-associated pMHC molecules compromise the functional integrity of CTL, e.g., by inducing apoptosis of CTL, which limits their usefulness for T cell sorting or cloning. By testing well-defined soluble pMHC complexes containing linkers of different length and valence, we find that complexes comprising short linkers (i.e., short pMHC-pMHC distances), but not those containing long linkers, induce rapid death of CTL. This cell death relies on CTL activation, the coreceptor CD8 and cytoskeleton integrity, but is not dependent on death receptors (i.e., Fas, TNFR1, and TRAILR2) or caspases. Within minutes of CTL exposure to pMHC complexes, reactive oxygen species emerged and mitochondrial membrane depolarized, which is reminiscent of caspase-independent T cell death. The morphological changes induced during this rapid CTL death are characteristic of programmed necrosis and not apoptosis. Thus, soluble pMHC complexes containing long linkers are recommended to prevent T cell death, whereas those containing short linkers can be used to eliminate Ag-specific CTL

    Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells.

    No full text
    NKG2D is an activation receptor that allows natural killer (NK) cells to detect diseased host cells. The engagement of NKG2D with corresponding ligand results in surface modulation of the receptor and reduced function upon subsequent receptor engagement. However, it is not clear whether in addition to modulation the NKG2D receptor complex and/or its signaling capacity is preserved. We show here that the prolonged encounter with tumor cell-bound, but not soluble, ligand can completely uncouple the NKG2D receptor from the intracellular mobilization of calcium and the exertion of cell-mediated cytolysis. However, cytolytic effector function is intact since NKG2D ligand-exposed NK cells can be activated via the Ly49D receptor. While NKG2D-dependent cytotoxicity is impaired, prolonged ligand exposure results in constitutive interferon gamma (IFNgamma) production, suggesting sustained signaling. The functional changes are associated with a reduced presence of the relevant signal transducing adaptors DNAX-activating protein of 10 kDa (DAP-10) and killer cell activating receptor-associated protein/DNAX-activating protein of 12 kDa (KARAP/DAP-12). That is likely the consequence of constitutive NKG2D engagement and signaling, since NKG2D function and adaptor expression is restored to normal when the stimulating tumor cells are removed. Thus, the chronic exposure to tumor cells expressing NKG2D ligand alters NKG2D signaling and may facilitate the evasion of tumor cells from NK cell reactions
    corecore