581 research outputs found

    Distributed Control of a Limited Angular Field-of-View Multi-Robot System in Communication-Denied Scenarios: A Probabilistic Approach

    Get PDF
    Multi-robot systems are gaining popularity over single-agent systems for their advantages. Although they have been studied in agriculture, search and rescue, surveillance, and environmental exploration, real-world implementation is limited due to agent coordination complexities caused by communication and sensor limitations. In this work, we propose a probabilistic approach to allow coordination among robots in communication-denied scenarios, where agents can only rely on visual information from a camera with a limited angular field-of-view. Our solution utilizes a particle filter to analyze uncertainty in the location of neighbors, together with Control Barrier Functions to address the exploration-exploitation dilemma that arises when robots must balance the mission goal with seeking information on undetected neighbors. This technique was tested with virtual robots required to complete a coverage mission, analyzing how the number of deployed robots affects performances and making a comparison with the ideal case of isotropic sensors and communication. Despite an increase in the amount of time required to fulfill the task, results have shown to be comparable to the ideal scenario in terms of final configuration achieved by the system

    Theoretical study of the (3x2) reconstruction of beta-SiC(001)

    Full text link
    By means of ab initio molecular dynamics and band structure calculations, as well as using calculated STM images, we have singled out one structural model for the (3x2) reconstruction of the Si-terminated (001) surface of cubic SiC, amongst several proposed in the literature. This is an alternate dimer-row model, with an excess Si coverage of 1/3, yielding STM images in good accord with recent measurements [F.Semond et al. Phys. Rev. Lett. 77, 2013 (1996)].Comment: To be published in PRB Rapid. Com

    Ab initio Study of Misfit Dislocations at the SiC/Si(001) Interface

    Full text link
    The high lattice mismatched SiC/Si(001) interface was investigated by means of combined classical and ab initio molecular dynamics. Among the several configurations analyzed, a dislocation network pinned at the interface was found to be the most efficient mechanism for strain relief. A detailed description of the dislocation core is given, and the related electronic properties are discussed for the most stable geometry: we found interface states localized in the gap that may be a source of failure of electronic devices

    Tailoring the electronic properties of silicon with cysteine: A first principle study

    Get PDF
    We discuss the electronic structure modifications induced on the dihydride-terminated Si(001) surface upon cysteine adsorption by means of ab initio calculations: several stable functionalization schemes are presented, providing different routes for biological recognition, surface nanostructuring, and biomolecular electronics applications. The resulting hybrid systems are discussed and compared in terms of stability, structural, and electronic properties. Based on our results, we propose STM and photoemission experiments to determine unambiguously the adsorption mechanism involved and the attached functional group

    The Role of MicroRNAs in Influencing Body Growth and Development

    Get PDF
    Body growth and development are regulated among others by genetic and epigenetic factors. MicroRNAs (miRNAs) are epigenetic regulators of gene expression that act at the post-transcriptional level, thereby exerting a strong influence on regulatory gene networks. Increasing studies suggest the importance of miRNAs in the regulation of the growth plate and growth hormone (GH)-insulin-like growth factor (IGF) axis during the life course in a broad spectrum of animal species, contributing to longitudinal growth. This review summarizes the role of miRNAs in regulating growth in different in vitro and in vivo models acting on GH, GH receptor (GHR), IGFs, and IGF1R genes besides current knowledge in humans, and highlights that this regulatory system is of importance for growth

    High-density molecular characterization and association mapping in Ethiopian durum wheat landraces reveals high diversity and potential for wheat breeding

    Get PDF
    Durum wheat (Triticum turgidum subsp. durum) is a key crop worldwide, and yet, its improvement and adaptation to emerging environmental threats is made difficult by the limited amount of allelic variation included in its elite pool. New allelic diversity may provide novel loci to international crop breeding through quantitative trait loci (QTL) mapping in unexplored material. Here, we report the extensive molecular and phenotypic characterization of hundreds of Ethiopian durum wheat landraces and several Ethiopian improved lines. We test 81 587 markers scoring 30 155 single nucleotide polymorphisms and use them to survey the diversity, structure, and genome-specific variation in the panel. We show the uniqueness of Ethiopian germplasm using a siding collection of Mediterranean durum wheat accessions. We phenotype the Ethiopian panel for ten agronomic traits in two highly diversified Ethiopian environments for two consecutive years and use this information to conduct a genome-wide association study. We identify several loci underpinning agronomic traits of interest, both confirming loci already reported and describing new promising genomic regions. These loci may be efficiently targeted with molecular markers already available to conduct marker-assisted selection in Ethiopian and international wheat. We show that Ethiopian durum wheat represents an important and mostly unexplored source of durum wheat diversity. The panel analysed in this study allows the accumulation of QTL mapping experiments, providing the initial step for a quantitative, methodical exploitation of untapped diversity in producing a better wheat

    Chiral Polyalkylthiophenes for Organic Light Emitting Diodes

    Get PDF
    Chiral polyalkylthiophenes are noncentrosymmetric organic materials which can be used both in second harmonic-generation devices and in polarized light emitting diodes. In this work we present the synthesis and the characterization of a polyalkylthiophene with a chiral center very close to the conjugated backbone: poly(3-[(S)-2-methylbutyl]thiophene) (PMBT). Circular dichroism (CD) measurements have been carried out to ascertain the chirality of these materials. The CD spectra show intense signals both in mixed solvents and in the solid state. The strong Cotton effect can be associated to a highly ordered aggregated phase whose nature is still under investigation. We also present the photo and electroluminescence characterization of single layer light emitting diode (LED) with the following configuration: ITO (Tin Indium Oxide)/PMBT/Al

    Relaxation processes in thiophene-based random copolymers

    Get PDF
    The relaxation dynamics of soluble polyalkylthiophenes obtained by the random copolymerisation of 3,4-dibutylthiophene and 3-butylthiophene monomers is investigated. In these systems, the effective conjugation length, the optical gap and the non-radiative decay rate are controlled by varying the content of disubstituted monomers, the steric hindrance of which induces a twisting angle between thiophene rings. Several indications are reported in favour of spectral diffusion of the photoexcitations. Migration processes mainly occur within a few tens of picoseconds

    GH and IGF System: The Regulatory Role of miRNAs and lncRNAs in Cancer

    Get PDF
    Growth hormone (GH) and the insulin-like growth factor (IGF) system are involved in many biological processes and have growth-promoting actions regulating cell proliferation, differentiation, apoptosis and angiogenesis. A recent chapter in epigenetics is represented by microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) which regulate gene expression. Dysregulated miRNAs and lncRNAs have been associated with several diseases including cancer. Herein we report the most recent findings concerning miRNAs and lncRNAs regulating GH and the IGF system in the context of pituitary adenomas, osteosarcoma and colorectal cancer, shedding light on new possible therapeutic targets. Pituitary adenomas are increasingly common intracranial tumors and somatotroph adenomas determine supra-physiological GH secretion and cause acromegaly. Osteosarcoma is the most frequent bone tumor in children and adolescents and was reported in adults who were treated with GH in childhood. Colorectal cancer is the third cancer in the world and has a higher prevalence in acromegalic patients
    corecore