4,158 research outputs found
A nitrite microsensor for profiling environmental biofilms
A highly selective liquid membrane nitrite microsensor based on the hydrophobic ion-carrier aquocyano-cobalt(III) -hepta(2-phenylethyl)-cobrynate is described, The sensor has a tip diameter of 10 to 15 mu m. The response is log-linear in freshwater down to 1 mu M NO2- and in seawater to 10 mu M NO2-. A method is described for preparation of relatively large polyvinyl chloride (PVC)-gelled liquid membrane microsensors with a tip diameter of 5 to 15 mu m, having a hydrophilic coating on the tip, The coating and increased tip diameter resulted in more sturdy sensors, with a lower detection limit and a more stable signal than uncoated nitrite sensors with a tip diameter of 1 to 3 mu m. The coating protects the sensor membrane from detrimental direct contact with biomass and can be used for all PVC-gelled liquid membrane sensors meant for profiling microbial mats, biofilms, and sediments. Thanks to these improvements, liquid membrane sensors can now be used in complex environmental samples and in situ, e.g., in operating bioreactors. Examples of measurements in denitrifying, nitrifying, and nitrifying/denitrifying biofilms from wastewater treatment plants are shown. In all of these biofilms high nitrite concentrations were found in narrow zones of less than 1 mm
Role of Extracellular Carbonic Anhydrase in Dissolved Inorganic Carbon Uptake in Alkaliphilic Phototrophic Biofilm
Alkaline Soda Lakes are extremely productive ecosystems, due to their high dissolved inorganic carbon (DIC) concentrations. Here, we studied the dynamics of the carbonate system, in particular, the role of extracellular carbonic anhydrase (eCA) of an alkaliphilic phototrophic biofilm composed of bacteria enriched from soda lake benthic mats. By using measurements with microsensors and membrane inlet mass spectrometry, combined with mathematical modeling, we show how eCA controls DIC uptake. In our experiments, the activity of eCA varied four-fold, and was controlled by the bicarbonate concentration during growth: a higher bicarbonate concentration led to lower eCA activity. Inhibition of eCA decreased both the net and the gross photosynthetic productivities of the investigated biofilms. After eCA inhibition, the efflux of carbon dioxide (CO2) from the biofilms increased two- to four-fold. This could be explained by the conversion of CO2, leaking from cyanobacterial cells, by eCA, to bicarbonate. Bicarbonate is then taken up again by the cyanobacteria. In suspensions, eCA reduced the CO2 leakage to the bulk medium from 90 to 50%. In biofilms cultivated at low bicarbonate concentration (similar to 0.13 mM), the oxygen production was reduced by a similar ratio upon eCA inhibition. The role of eCA in intact biofilms was much less significant compared to biomass suspensions, as CO2 loss to the medium is reduced due to mass transfer resistance
The reliability of mortality data in Johannesburg
Infonnation on deaths in Johannesburg is collected on a voluntary basis by the Johannesburg City Health Department from the Department of Home Affairs regional offices as well as state mortuaries in the area. The reliability of these routinely collected data was assessed. Records of deaths of Asians, coloureds and whites from 1 July 1989 to 31 December 1989 were included in the study. Burial orders obtained from the different cemeteries and crematoria in the area were compared with the routinely collected mortality data. Two thousand eight hundred and thirty-seven deaths were included in the study. One hundred and ninety (6%) deaths in the department's records could not be found among the corresponding burial orders while 1 019 (36%) burial order records were not found among the department's routinely collected mortality data. Underreporting of deaths was greatest among the aged (43%) and infants (39%). When this underreporting was taken into account, the corrected infant mortality rate was 19,111 000 live births as opposed to 14,1. Recommendations are made for the improvement ofthe quality of routinely collected mortality data
Evidence for water-mediated mechanisms in coral-algal interactions
Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at the coral algal interface vary with algal competitors and competitiveness. Using field observations and microsensor measurements in a flow chamber, we show that coral (massive Porites) interfaces with thick turf algae, macro algae, and cyanobacteria, which are successful competitors against coral in the field, are characterized by a thick DBL and hypoxia at night. In contrast, coral interfaces with crustose coralline algae, conspecifics, and thin turf algae, which are poorer competitors, have a thin DBL and low hypoxia at night. Furthermore, DBL thickness and hypoxia at the interface with turf decreased with increasing flow speed, but not when thick turf was upstream. Our results support the importance of water-mediated transport mechanisms in coral algal interactions. Shifts towards algal dominance, particularly dense assemblages, may lead to thicker DBLs, higher hypoxia, and higher concentrations of harmful metabolites and pathogens along coral borders, which in turn may facilitate algal overgrowth of live corals. These effects may be mediated by flow speed and orientation
The Impairment of Macrophage-to-Feces Reverse Cholesterol Transport during Inflammation Does Not Depend on Serum Amyloid A
Studies suggest that inflammation impairs reverse cholesterol transport (RCT). We investigated whether serum amyloid A (SAA) contributes to this impairment using an established macrophage-to-feces RCT model. Wild-type (WT) mice and mice deficient in SAA1.1 and SAA2.1 (SAAKO) were injected intraperitoneally with 3H-cholesterol-labeled J774 macrophages 4 hr after administration of LPS or buffered saline. 3H-cholesterol in plasma 4 hr after macrophage injection was significantly reduced in both WT and SAAKO mice injected with LPS, but this was not associated with a reduced capacity of serum from LPS-injected mice to promote macrophage cholesterol efflux in vitro. Hepatic accumulation of 3H-cholesterol was unaltered in either WT or SAAKO mice by LPS treatment. Radioactivity present in bile and feces of LPS-injected WT mice 24 hr after macrophage injection was reduced by 36% (P \u3c 0.05) and 80% (P \u3c 0.001), respectively. In contrast, in SAAKO mice, LPS did not significantly reduce macrophage-derived 3H-cholesterol in bile, and fecal excretion was reduced by only 45% (P \u3c 0.05). Injection of cholesterol-loaded allogeneic J774 cells, but not syngeneic bone-marrow-derived macrophages, transiently induced SAA in C57BL/6 mice. Our study confirms reports that acute inflammation impairs steps in the RCT pathway and establishes that SAA plays only a minor role in this impairment
Impact of Individual Acute Phase Serum Amyloid A Isoforms on HDL Metabolism in Mice
The acute phase (AP) reactant serum amyloid A (SAA), an HDL apolipoprotein, exhibits pro-inflammatory activities, but its physiological function(s) are poorly understood. Functional differences between SAA1.1 and SAA2.1, the two major SAA isoforms, are unclear. Mice deficient in either isoform were used to investigate plasma isoform effects on HDL structure, composition, and apolipoprotein catabolism. Lack of either isoform did not affect the size of HDL, normally enlarged in the AP, and did not significantly change HDL composition. Plasma clearance rates of HDL apolipoproteins were determined using native HDL particles. The fractional clearance rates (FCRs) of apoA-I, apoA-II, and SAA were distinct, indicating that HDL is not cleared as intact particles. The FCRs of SAA1.1 and SAA2.1 in AP mice were similar, suggesting that the selective deposition of SAA1.1 in amyloid plaques is not associated with a difference in the rates of plasma clearance of the isoforms. Although the clearance rate of SAA was reduced in the absence of the HDL receptor, scavenger receptor class B type I (SR-BI), it remained significantly faster compared with that of apoA-I and apoA-II, indicating a relatively minor role of SR-BI in SAA’s rapid clearance. These studies enhance our understanding of SAA metabolism and SAA’s effects on AP-HDL composition and catabolism
- …