15,104 research outputs found
Sex Ratio and Sexual Dimorphism in \u3ci\u3eFormica Exsectoides\u3c/i\u3e, the Allegheny Mound Ant (Hymenoptera: Formicidae)
We excavated 66 mounds from 6 populations of Formica exsectoides in Michigan jack pine, collecting sexual caste pupae for sex ratio estimates and measurement of dimorphism. Reproductive caste brood was present in only 37 ofthe 66 mounds, and presence of reproductive caste brood was associated with larger mound surface area. Females were heavier than males, but did not differ from males in energy density. Sexes did not differ in timing or rate of development. Sex ratio estimates based on individual mounds ranged from 1.0 (all male) to 0.08 (femaleĀ·biased). Four of the six study populations were strongly maleĀ·biased, while sex ratio estimates for the remaining populations did not differ from equal investment. While this interpopulation variation may be caused by genetic factors, the equal investment populations were 10Ā· cated in or near patches of clearĀ·cut forest, suggesting that environmental impacts should be investigated
Prediction of unsteady aerodynamic loadings caused by leading edge and trailing edge control surface motions in subsonic compressible flow: Computer program description
A digital computer program has been developed to calculate unsteady loadings caused by motions of lifting surfaces with leading edge or trailing edge controls based on the subsonic kernel function approach. The pressure singularities at hinge line and side edges have been extracted analytically as a preliminary step to solving the integral equation by collocation. The program calculates generalized aerodynamic forces for user supplied deflection modes. Optional intermediate output includes pressure at an array of points, and sectional generalized forces. From one to six controls on the half span can be accommodated
The effect of total knee arthroplasty on joint movement during functional activities and joint range of motion with particular regard to higher flexion users
Study aimed to evaluate active and functional knee excursion of patients before and after total knee arthroplasty (TKA) and to determine whether TKA restores quality of life related to functional activities of daily living. Found that although TKA offers excellent pain relief and contributes to the overall well-being of the patient, these results suggest that it also leads to a reduced range of active and functional motion in the majority of patients. This is associated with a lower-than-normal physical quality of life. The design of implants and rehabilitation programmes should be reconsidered so that better range of motion and quality of life can be achieved for patients
Recommended from our members
The Influence of Water on Dielectric Behavior of Silica-filled Epoxy Nano-composites and Percolation Phenomenon
The dielectric properties of epoxy resin were studied as a function of hydration by dielectric spectroscopy. The dielectric spectroscopy measurements show different conduction and quasi-DC behaviors at very low frequencies (<10-2 Hz) with activation energies dependent on the hydration. These observations lead to the development of a model in which a āwater shellā is formed around the nano-particles. The multiple shell model, originally proposed by Lewis and developed by Tanaka, has been further developed to explain low frequency dielectric spectroscopy results in which percolation of charge carriers through overlapping water shells was shown to occur. At 100% relative humidity, water is believed to surround the nanoparticles to a depth of approximately 10 monolayers as the first layer. A second layer of water is proposed that is dispersed by sufficiently concentrated to be conductive. If all the water had existed in a single layer surrounding a nanoparticle, this layer would have been approximately 5 nm thick at 100% RH. Filler particles that have surfaces that are functionalized to be hydrophobic considerably reduce the amount of water absorbed in nanocomposites under the same conditions of humidity. PEA results show that the wetted epoxy specimens have a higher threshold field of space charge accumulation than such dry specimens since water enhances charge decay
Recommended from our members
Influence of absorbed water on the dielectric properties and glass-transition temperature of silica-filled epoxy nanocomposites
Work on dielectric spectroscopy of epoxy resin filled with nano-SiO2 at different relative humidities and temperatures is reported. Above the glass-transition temperature (Tg), dc-like imperfect charge transport (QDC or LFD) dominates the low frequency dielectric spectrum. Another mid-frequency relaxation process was found in the non-dried composites. Water also induces glass-transition temperature decreases, which can be measured both by dielectric spectroscopy and DSC. Both theory and experiment demonstrated that a higher water content could exist in nanocomposites than unfilled epoxy suggesting a bigger free volume when nanostructured. In our system, the hydrophilic surface of silica is likely to cause water to surround and lead to delamination of the epoxy from SiO2. This is a potential mechanical and dielectric weakness in the nanocomposites, which may lead to an ageing phenomenon. Hydrophobic surface group may reduce the water adsorption in nanocomposites
Rapid rotation of micron and submicron dielectric particles measured using optical tweezers
We demonstrate the use of a laser trap (āoptical tweezersā) and back-focal-plane position detector to measure rapid rotation in aqueous solution of single particles with sizes in the vicinity of 1 Ī¼m. Two types of rotation were measured: electrorotation of polystyrene microspheres and rotation of the flagellar motor of the bacterium Vibrio alginolyticus. In both cases, speeds in excess of 1000 Hz (rev sā1) were measured. Polystyrene beads of diameter about 1 Ī¼m labelled with smaller beads were held at the centre of a microelectrode array by the optical tweezers. Electrorotation of the labelled beads was induced by applying a rotating electric field to the solution using microelectrodes. Electrorotation spectra were obtained by varying the frequency of the applied field and analysed to obtain the surface conductance of the beads. Single cells of V. alginolyticus were trapped and rotation of the polar sodium-driven flagellar motor was measured. Cells rotated more rapidly in media containing higher concentrations of Na+, and photodamage caused by the trap was considerably less when the suspending medium did not contain oxygen. The technique allows single-speed measurements to be made in less than a second and separate particles can be measured at a rate of several per minute
Experimental Determination of the Lorenz Number in Cu0.01Bi2Te2.7Se0.3 and Bi0.88Sb0.12
Nanostructuring has been shown to be an effective approach to reduce the
lattice thermal conductivity and improve the thermoelectric figure of merit.
Because the experimentally measured thermal conductivity includes contributions
from both carriers and phonons, separating out the phonon contribution has been
difficult and is mostly based on estimating the electronic contributions using
the Wiedemann-Franz law. In this paper, an experimental method to directly
measure electronic contributions to the thermal conductivity is presented and
applied to Cu0.01Bi2Te2.7Se0.3, [Cu0.01Bi2Te2.7Se0.3]0.98Ni0.02, and
Bi0.88Sb0.12. By measuring the thermal conductivity under magnetic field,
electronic contributions to thermal conductivity can be extracted, leading to
knowledge of the Lorenz number in thermoelectric materials
Social work education, training and standards in the Asia-Pacific region
This article discusses the joint project between the International Association of Schools of Social Work (IASSW) and the International Federation of Social Workers (IFSW) to establish guidelines for the training and standard setting that elucidates what social work represents on a global level. While it is impossible to address all the issues that might be significant in such a large scope, attention is given to the challenges establishing global standards might encounter in a region as diverse as the Asia-Pacific
Representations of the Weyl group and Wigner functions for SU(3)
Bases for SU(3) irreps are constructed on a space of three-particle tensor
products of two-dimensional harmonic oscillator wave functions. The Weyl group
is represented as the symmetric group of permutations of the particle
coordinates of these space. Wigner functions for SU(3) are expressed as
products of SU(2) Wigner functions and matrix elements of Weyl transformations.
The constructions make explicit use of dual reductive pairs which are shown to
be particularly relevant to problems in optics and quantum interferometry.Comment: : RevTex file, 11 pages with 2 figure
An exactly solvable model of a superconducting to rotational phase transition
We consider a many-fermion model which exhibits a transition from a
superconducting to a rotational phase with variation of a parameter in its
Hamiltonian. The model has analytical solutions in its two limits due to the
presence of dynamical symmetries. However, the symmetries are basically
incompatible with one another; no simple solution exists in intermediate
situations. Exact (numerical) solutions are possible and enable one to study
the behavior of competing but incompatible symmetries and the phase transitions
that result in a semirealistic situation. The results are remarkably simple and
shed light on the nature of phase transitions.Comment: 11 pages including 1 figur
- ā¦