4,638 research outputs found
Intelligent search for distributed information sources using heterogeneous neural networks
As the number and diversity of distributed information sources on the Internet exponentially increase, various search services are developed to help the users to locate relevant information. But they still exist some drawbacks such as the difficulty of mathematically modeling retrieval process, the lack of adaptivity and the indiscrimination of search. This paper shows how heteroge-neous neural networks can be used in the design of an intelligent distributed in-formation retrieval (DIR) system. In particular, three typical neural network models - Kohoren's SOFM Network, Hopfield Network, and Feed Forward Network with Back Propagation algorithm are introduced to overcome the above drawbacks in current research of DIR by using their unique properties. This preliminary investigation suggests that Neural Networks are useful tools for intelligent search for distributed information sources
Intensity-Based Registration of Freehand 3D Ultrasound and CT-scan Images of the Kidney
This paper presents a method to register a pre-operative Computed-Tomography
(CT) volume to a sparse set of intra-operative Ultra-Sound (US) slices. In the
context of percutaneous renal puncture, the aim is to transfer planning
information to an intra-operative coordinate system. The spatial position of
the US slices is measured by optically localizing a calibrated probe. Assuming
the reproducibility of kidney motion during breathing, and no deformation of
the organ, the method consists in optimizing a rigid 6 Degree Of Freedom (DOF)
transform by evaluating at each step the similarity between the set of US
images and the CT volume. The correlation between CT and US images being
naturally rather poor, the images have been preprocessed in order to increase
their similarity. Among the similarity measures formerly studied in the context
of medical image registration, Correlation Ratio (CR) turned out to be one of
the most accurate and appropriate, particularly with the chosen non-derivative
minimization scheme, namely Powell-Brent's. The resulting matching transforms
are compared to a standard rigid surface registration involving segmentation,
regarding both accuracy and repeatability. The obtained results are presented
and discussed
Large amplitude solitary waves in and near the Earth's magnetosphere, magnetopause and bow shock: Polar and Cluster observations
International audienceSolitary waves with large electric fields (up to 100's of mV/m) have been observed throughout the magnetosphere and in the bow shock. We discuss observations by Polar at high altitudes ( ~ 4-8 RE ), during crossings of the plasma sheet boundary and cusp, and new measurements by Polar at the equatorial magnetopause and by Cluster near the bow shock, in the cusp and at the plasma sheet boundary. We describe the results of a statistical study of electron solitary waves observed by Polar at high altitudes. The mean solitary wave duration was ~ 2 ms. The waves have velocities from ~ 1000 km/s to > 2500 km/s. Observed scale sizes (parallel to the magnetic field) are on the order of 1-10lD, with eF/kTe from ~ 0.01 to O(1). The average speed of solitary waves at the plasma sheet boundary is faster than the average speed observed in the cusp and at cusp injections. The amplitude increases with both velocity and scale size. These observations are all consistent with the identification of the solitary waves as electron hole modes. We also report the discovery of solitary waves at the magnetopause, observed in Polar data obtained at the subsolar equatorial magnetopause. Both positive and negative potential structures have been observed with amplitudes up to ~ 25 mV/m. The velocities range from 150 km/s to >2500 km/s, with scale sizes the order of a kilometer (comparable to the Debye length). Initial observations of solitary waves by the four Cluster satellites are utilized to discuss the scale sizes and time variability of the regions where the solitary waves occur. Preliminary results from the four Cluster satellites have given a glimpse of the spatial and temporal variability of the occurrence of solitary waves and their association with other wave modes. In all the events studied, significant differences were observed in the waveforms observed simultaneously at the four locations separated by ~ 1000 km. When solitary waves were seen at one satellite, they were usually also seen at the other satellites within an interval of a few seconds. In association with an energetic electron injection and a highly compressed magnetosphere, Cluster has observed the largest amplitude solitary waves (>750 mV/m) ever reported in the outer magnetosphere
Phonons in random alloys: the itinerant coherent-potential approximation
We present the itinerant coherent-potential approximation(ICPA), an analytic,
translationally invariant and tractable form of augmented-space-based,
multiple-scattering theory in a single-site approximation for harmonic phonons
in realistic random binary alloys with mass and force-constant disorder.
We provide expressions for quantities needed for comparison with experimental
structure factors such as partial and average spectral functions and derive the
sum rules associated with them. Numerical results are presented for Ni_{55}
Pd_{45} and Ni_{50} Pt_{50} alloys which serve as test cases, the former for
weak force-constant disorder and the latter for strong. We present results on
dispersion curves and disorder-induced widths. Direct comparisons with the
single-site coherent potential approximation(CPA) and experiment are made which
provide insight into the physics of force-constant changes in random alloys.
The CPA accounts well for the weak force-constant disorder case but fails for
strong force-constant disorder where the ICPA succeeds.Comment: 19 pages, 12 eps figures, uses RevTex
Enhancement of dye regeneration kinetics in dichromophoric porphyrin-carbazole triphenylamine dyes influenced by more exposed radical cation orbitals
Reduction kinetics of oxidized dyes absorbed on semiconductor surfaces and immersed in redox active electrolytes has been mainly modeled based on the free energy difference between the oxidation potential of the dye and the redox potential of the electrolyte. Only a few mechanisms have been demonstrated to enhance the kinetics by other means. In this work, the rate constant of the reduction of oxidized porphyrin dye is enhanced by attaching non-conjugated carbazole triphenylamine moiety using iodine/triiodide and tris(2,2âČ-bispyridinium)cobalt II/III electrolytes. These results are obtained using transient absorption spectroscopy by selectively probing the regeneration kinetics at the porphyrin radical cation and the carbazole triphenylamine radical cation absorption wavelengths. The enhancement in the reduction kinetics is not attributed to changes in the driving force, but to the more exposed dye cation radical orbitals of the dichromophoric dye. The results are important for the development of high efficiency photo-electrochemical devices with minimalized energy loss at electron transfer interfaces
Observations of whistler mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric Multiscale mission
We show observations from the Magnetospheric Multiscale (MMS) mission of whistler mode waves in the Earth's low-latitude boundary layer (LLBL) during a magnetic reconnection event. The waves propagated obliquely to the magnetic field toward the X line and were confined to the edge of a southward jet in the LLBL. Bipolar parallel electric fields interpreted as electrostatic solitary waves (ESW) are observed intermittently and appear to be in phase with the parallel component of the whistler oscillations. The polarity of the ESWs suggests that if they propagate with the waves, they are electron enhancements as opposed to electron holes. The reduced electron distribution shows a shoulder in the distribution for parallel velocities between 17,000 and 22,000âkm/s, which persisted during the interval when ESWs were observed, and is near the phase velocity of the whistlers. This shoulder can drive Langmuir waves, which were observed in the high-frequency parallel electric field data
MMS observations of electron-scale filamentary currents in the reconnection exhaust and near the X line
© 2016. American Geophysical Union. All Rights Reserved.We report Magnetospheric Multiscale observations of macroscopic and electron-scale current layers in asymmetric reconnection. By intercomparing plasma, magnetic, and electric field data at multiple crossings of a reconnecting magnetopause on 22 October 2015, when the average interspacecraft separation was ~10km, we demonstrate that the ion and electron moments are sufficiently accurate to provide reliable current density measurements at 30ms cadence. These measurements, which resolve current layers narrower than the interspacecraft separation, reveal electron-scale filamentary Hall currents and electron vorticity within the reconnection exhaust far downstream of the X line and even in the magnetosheath. Slightly downstream of the X line, intense (up to 3ÎŒA/m2) electron currents, a super-AlfvĂ©nic outflowing electron jet, and nongyrotropic crescent shape electron distributions were observed deep inside the ion-scale magnetopause current sheet and embedded in the ion diffusion region. These characteristics are similar to those attributed to the electron dissipation/diffusion region around the X line
Abnormal social interactions in a Drosophila mutant of an autism candidate gene: Neuroligin 3
Social interactions are typically impaired in neuropsychiatric disorders such as autism, for which the genetic underpinnings are very complex. Social interactions can be modeled by analysis of behaviors, including social spacing, sociability, and aggression, in simpler organisms such as Drosophila melanogaster. Here, we examined the effects of mutants of the autism-related gene neuroligin 3 (nlg3) on fly social and non-social behaviors. Startled-induced negative geotaxis is affected by a loss of function nlg3 mutation. Social space and aggression are also altered in a sex-and social-experience-specific manner in nlg3 mutant flies. In light of the conserved roles that neuroligins play in social behavior, our results offer insight into the regulation of social behavior in other organisms, including humans
- âŠ