1,069 research outputs found

    From Disordered Crystal to Glass: Exact Theory

    Full text link
    We calculate thermodynamic properties of a disordered model insulator, starting from the ideal simple-cubic lattice (g=0g = 0) and increasing the disorder parameter gg to ≫1/2\gg 1/2. As in earlier Einstein- and Debye- approximations, there is a phase transition at gc=1/2g_{c} = 1/2. For g<gcg<g_{c} the low-T heat-capacity C∼T3C \sim T^{3} whereas for g>gcg>g_{c}, C∼TC \sim T. The van Hove singularities disappear at {\em any finite gg}. For g>1/2g>1/2 we discover novel {\em fixed points} in the self-energy and spectral density of this model glass.Comment: Submitted to Phys. Rev. Lett., 8 pages, 4 figure

    Electric Control of Spin Currents and Spin-Wave Logic

    Full text link
    Spin waves in insulating magnets are ideal carriers for spin currents with low energy dissipation. An electric field can modify the dispersion of spin waves, by directly affecting, via spin-orbit coupling, the electrons that mediate the interaction between magnetic ions. Our microscopic calculations based on the super-exchange model indicate that this effect of the electric field is sufficiently large to be used to effectively control spin currents. We apply these findings to the design of a spin-wave interferometric device, which acts as a logic inverter and can be used as a building block for room-temperature, low-dissipation logic circuits.Comment: 4 pages, 3 figures, added the LL equation and the discussion on spin-wave-induced electric field, accepted by PR

    Theory of optical spectral weights in Mott insulators with orbital degrees of freedom

    Full text link
    Introducing partial sum rules for the optical multiplet transitions, we outline a unified approach to magnetic and optical properties of strongly correlated transition metal oxides. On the example of LaVO3_3 we demonstrate how the temperature and polarization dependences of different components of the optical multiplet are determined by the underlying spin and orbital correlations dictated by the low-energy superexchange Hamiltonian. Thereby the optical data provides deep insight into the complex spin-orbital physics and the role played by orbital fluctuations.Comment: 6 pages, 3 figures, expanded versio

    Anomalous dynamics in two- and three- dimensional Heisenberg-Mattis spin glasses

    Full text link
    We investigate the spectral and localization properties of unmagnetized Heisenberg-Mattis spin glasses, in space dimensionalities d=2d=2 and 3, at T=0. We use numerical transfer-matrix methods combined with finite-size scaling to calculate Lyapunov exponents, and eigenvalue-counting theorems, coupled with Gaussian elimination algorithms, to evaluate densities of states. In d=2d=2 we find that all states are localized, with the localization length diverging as ω−1\omega^{-1}, as energy ω→0\omega \to 0. Logarithmic corrections to density of states behave in accordance with theoretical predictions. In d=3d=3 the density-of-states dependence on energy is the same as for spin waves in pure antiferromagnets, again in agreement with theoretical predictions, though the corresponding amplitudes differ.Comment: RevTeX4, 9 pages, 9 .eps figure

    Bosonization on the lattice: the emergence of the higher harmonics

    Full text link
    A general and transparent procedure to bosonize fermions placed on a lattice is presented. Harmonics higher than kFk_F are shown to appear in the one-paticle Green function, due to the compact character of real electron bands. Quantitative estimations of the role of these higher harmonics are made possible by the bosonization technique presented here.Comment: Pages: 15 (REVTEX 3.0) plus 4 postscript figures appended at the end of the tex

    Theory of superexchange in CuO2

    Get PDF
    Journal ArticleThe limit method allows exact analysis of low-lying electronic states in a strong-coupling model Cu02 plane. We extend it to nonorthogonal orbitals and fit to a t-t'-J model. The superexchange parameter is J = g32t*, with the unit of energy and g3 a lumped parameter

    Theory of negative-mass cyclotron resonance

    Get PDF
    Journal ArticleIn recent communications1'2 Dousmanis et al. suggest that the re-entrant energy contours of the heavy-hole bands in Ge and Si3 could contribute a negative resistivity component to the overall resistivity of these materials, possibly related to a nonequilibrium density of carriers in these re-entrant states

    Quantum Hall Ferrimagnetism in lateral quantum dot molecules

    Full text link
    We demonstrate the existance of ferrimagnetic and ferromagnetic phases in a spin phase diagram of coupled lateral quantum dot molecules in the quantum Hall regime. The spin phase diagram is determined from Hartree-Fock Configuration Interaction method as a function of electron numbers N, magnetic field B, Zeeman energy, and tunneling barrier height. The quantum Hall ferrimagnetic phase corresponds to spatially imbalanced spin droplets resulting from strong inter-dot coupling of identical dots. The quantum Hall ferromagnetic phases correspond to ferromagnetic coupling of spin polarization at filling factors between ν=2\nu=2 and ν=1\nu=1.Comment: 4 pages, 4 figure

    Tuning the interactions of spin-polarized fermions using quasi-one-dimensional confinement

    Full text link
    The behavior of ultracold atomic gases depends crucially on the two-body scattering properties of these systems. We develop a multichannel scattering theory for atom-atom collisions in quasi-one-dimensional (quasi-1D) geometries such as atomic waveguides or highly elongated traps. We apply our general framework to the low energy scattering of two spin-polarized fermions and show that tightly-confined fermions have infinitely strong interactions at a particular value of the 3D, free-space p-wave scattering volume. Moreover, we describe a mapping of this strongly interacting system of two quasi-1D fermions to a weakly interacting system of two 1D bosons.Comment: Submitted to Phys. Rev. Let
    • …
    corecore