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The limit method allows exact analysis of low-lying electronic states in a strong-coupling model CuOz 
plane. We extend it to nonorthogonal orbitals and fit to a t-t' -J model. The superexchange parameter is J 
= g3 2t*, with t* the unit of energy and g3 a lumped parameter. 

Introduction. Charge carriers in CU02 planes are compos
ite entities subject to numerous nontrivial interactions. As 
these are basic ingredients in high-temperature supercon
ductors (HTS) it is necessary to understand their physics on 
a microscopic level. Only in this way could it be determined 
whether HTS is unique to copper-oxide planes, could be op
timized, and might be manifest in other compounds. The 
most peculiar of the interactions is superexchange, the sub
ject of the present paper. It is specific to oxides 1 and gener
ally unavailable in conventional, low-temperature supercon
ductors. Responsible for antiferromagnetism in the insulator, 
this same mechanism favors Cooper pairing, hence super
conductivity, in the metal. We obtain its parameter J in the 
strong-coupling limit2 by introducing nonorthogonality into 
a three-band model of copper and oxygen atomic orbitals. 

For the purpose of this study we retain as basis functions 
one copper and two oxygen orbitals per cell, and use the 
smallest number of independent physical parameters. They 
are ed, the energy of the copper d orbitals and U dd, the 
strength of the two-body Coulomb repulsion on this orbital; 
the matrix element t pd connecting an oxygen orbital to that 
of an adjacent copper, and a quasi-infinitesimal overlap pa
rameter lI.pd characterizing the lack of orthogonality of these 
two atomic functions. With just these parameters we provide 
a microscopic derivation of the t-t' -J model for the low
lying states and find IJ Itl can be as large as one wishes, 
while t'lt remains fixed at the near-optimal value, -0.168. 

The largest energies in the problem are U and Ie dl. Next 
in magnitude is t pd followed by t* == t ~dl U dd which is kept 
finite in the strong-coupling limit t pd'X U ~~2 -+00 and sets the 
energy scale of the low-lying states and of their dispersion.2 

We define two finite, dimensionless coupling constants: a 
very small one g 1 (g 12«; 1) where ed== - (g 1 + 1)( U ddl2), 
and g 2 with which to measure the non orthogonality, 
lI.pd==g2(tpdIUdd)1!2. Ultimately we obtain Jg 1

2g 2
4 t* 

-+g/t* with g3==glg/ an unconstrained parameter. 
If, in strong-coupling, one did not proceed to "the limit" 

countless additional small terms of O( t ~dl U ~d) or even 
smaller terms O(t;dIU-:ld),3 would enter into every calcula
tion including that of J. To our knowledge there does not 
exist any systematic many-body strong-coupling expansion 
in powers of l/U. This makes it difficult to rely on any 
theory which predicts J'XO(t;dIU~d)' however reasonable it 
may seem, as this quantity is zero in strong-coupling limit.4 

Even with realistic energies, Anderson 1 found long ago that 
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in small clusters nonorthogonality contributed more to super
exchange than did high-order terms in l/U. It is our finding 
as well, that for an infinite array of copper oxide in the 
strong-coupling limit nonorthogonality becomes the only ve
hicle for superexchange. 

Copper ions are physically disposed on a sq lattice with 
oxygen ions on the links. The atomic orbitals are D(r-RJ, a 
normalized d(x2 - y2) function on the ith copper ion, 
p x[r- Ri:±:: (a ,0)12] a normalized horizontal ligand oxygen 
p(x) orbital and py[r-Ri :±::(O,a)12] the corresponding verti
cal ligand. The zero of energy is set at the p orbitals' energy, 
e p ==0. Copper ions have valency 2 + and spin 112. We assign 
to the d orbital an energi ed<O which disfavors 3+ relative 
to 2 +. Valency 1 + is discouraged by the two-body Coulomb 
repUlsion parameterS U dd' We adopt the simplest sign con
vention for the orbitals: (+) lobes on the oxygens facing (+) 
lobes on a copper, and (-) facing (-). In this gauge, 

tpd= J drD*(r)Hopx or ir) 

and 

(1) 

where H 0 is the one-particle Hamiltonian. Only nearest
neighbors6 overlap; all non-nearest-neighbor overlaps and 
hopping matrix elements are taken to be zero, including the 
direct p x' P y overlap and corresponding matrix elements. 
One-body energies are as follows: 

J dr p;[r- R;- ! (a,O)]Hopx[r- Rr ! (a,O)] 

= J dr p:[r- R i - ! (O,a)]Hopy[r- R j - ! (O,a)] 

and 

==e 8 ·=0 P I,j 
(2) 

The only nonvanishing two-body interactions retained are the 
one-center, two-electron, Coulomb repulsion on each copper 
ion. For example, for the lth copper ion, 
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J J dr dr' D*(r- RdD*(r' - R2) Uz(r,r') 

4 

XD(r'-R3 )D(r-R4 )""UddIT 8i,l. (4) 
;~1 

Additional four-point functions involving atomic orbitals on 
two or more distinct centers are set zero. The small set of 
parameters7 in Eqs. (1)-(4) is actually quite sufficient.8 

While it would not be difficult to augment it for better fit to 
transport, optical absorption, photoemission, and even super
conductivity data, none of this is required in the derivation of 
the many-body superexchange mechanism which follows. 

Transformation to orthonormal representation. The first 
step is a Fourier transform: 

and 

( ) - 1 " - ik· R [ R I (0 ) ] (6) Pk.y r - {if 7' e JPy r- j- 2 ,a, 

then we combine these last into two, symmetry-adapted 
functions, 

(7) 

and 

(8) 

The normalization parameter is w(k) 

= 2 ~cos2(kxI2)+cos2ckyl2). Each of the functions defined in 
(5), (7), and (8) is normalized. But while f3t.(r) is orthogonal 
to all Dk(r) and <Pk(r), the others still fail to be orthogonal to 
each other. Using (I) we note 

and 

(9) 

Next, construct a normalized Bloch function 'I' orthogonal to 
(7) and (8), 

(10) 

The site-centered Wannier functions corresponding to (8) and 
(10) are9 

somewhat less localized than the originals. In general, their 
spread is measured by four lattice Green functions: G(R) 
= (lIN)LkCBZ[cosk.RI(1-X.~)], K(R)= (lIN)LkCBZ 
X [w2(k)co~ k· RI(1- X.~)], T(R) = (1/ N) L;CBZ 

X [w(k)cos k· RI( ~l- A~)J and M(R) = (II N)LkC-BZ 

X [cos k· RI ( ~ I - A ~)] which fall off with distance and are 
related by G(Ri)=LRM(R;-R)M(Rj-R), and K(Rij) 
=LRT(Ri-R)T(Rj-R). While generally such functions 
need to be evaluated numerically, they are also quite easily 
expanded to leading order in the small parameter, e.g., 
G(0)=1+4X.;d' K(0)=4(l+5X.;d)' G(8)=A;d' (8 
=nearest-neighbor vector), etc. We next construct an Hamil
tonian in the basis of the orthonormal functions (II). 

The Hamiltonian. The Hamiltonian operator ],f will con
tain terms quadratic and quartic in field operators. In the 
notation of Ref. 2, field operators denoted D'i,<T and D't<T ac
company the functions <P; and <Pi, while c;,<T and ct<T ac
company the '1'; and 'l'i. The symbol (J" labels the spin 
degree of freedom of the electrons. For example, the coeffi
cient of ct<TCj,<T in 3fJ is found, after a little algebra, to be 

J dr 'I'*(r- R;)Ho'l'(r- R) 

=edG(R;)-2tpdApdKCR;). (12) 

Unlike the equivalent integral in Eq. (3), (12) is not limited 
to just i = j [although the dropoff in (12) is exponential].l0 
The coefficient of D't<TD'j,<T remains, just as in Eq. (2), zero 
for all i,j. The coefficient of the cross term (ct<TD'j,<T 
+ H.c.) is 

Copper Coulomb integrals which accompany 
C~<TC;<TCn.(J"cm'<T are no longer strictly confined to individual 
centers: 

~ J J dr dr''I'*(r- R;)'I'*(r'- R)UJCr,r') 

X 'I'(r' - Rn)'I'Cr- Rm) 

=Udd~ M(R;-R)M(Rj-R)M(Rn-R)M(Rm-R). 
R 

(14) 

However there still are no quartic terms in any oxygen
related operators D'i,(J" or D'~(J"' Thus Eq. (14), with its huge 
number of terms, completes the list. There results a Hamil
tonian of the following form: 
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.J/t= ~ ~ [edG(Rij)-2tpd>"pdK(R;j)]c'!,aCj,a 
l,j iT 

+tpd~ ~ T(Rij)(c~aaj,a+H,c.) 
l,j a-

(15) 

Because the 13 states do not explicitly appear in .J/t we infer 
the existence of an energy band of zero width at energy 
e p =0. Once the Fermi level is positioned at j.t>0 two 13 
electrons permanently occupy each CU02 cell. We now deal 
with the remainder. 

Limit model values. We decompose .J/t into parts: .j?g'1 

which involves individual sites only, .J/t2 which involves 
pairs of distinct sites (and similarly .J/t3 and .J/t4, although in 
the limit, these do not contribute to the interactions we seek 
to study). We examine the first two in detail. Let .J/tl =2.;H; 
where the Hamiltonian of the ith site is 

H;= [edG(O) - 2tpd>"pdK(0)]~ n;,a + tpdT(O) 
u 

x ~ (C~aai,a+ H.c.)+ U dd [ ~ M4(R) ]n i,jn i,l' 

(16) 

where ni,a==C~uCi,a and, we recall, ed=-(l+gl)Udd12. 
Next, .J/tz=2.(ij)Hij [with (i,j)=any distinBuishable pair of 
sites, Rij*O]. We split up H;j=Hijl+Hd)+HU) as fol
lows: 

HU)=tpdT(R;)~ (c~aa;,u+H.c.), 
a 

H;P= ~ {edG(Rij)-2tPdA.PdK(Rij) 

+ U dd [ ~ M
3
(R)M(R+ Rij) ]n;,-u} C~aCj,a 

+ ~ {edG(R;)-2tpdA.PdK(Rij) 

(17a) 

(17b) 

+Udd [ ~ M3(R)M(R+Rj;)]nj,_<T}CJ.uC;,a, (l7c) 

Up to this point all the results have been obtained 
without approximation. We now pass to the strong-coupling 
limit. The coefficients in Hi simplify as follows: edG(O) 
- 2tpdA.pdK (0) -> ed( 1 + 4>"~d) - 8tpdA. pd( 1 + 5A.~d) -> ed 

and similarly, T(O)tpd=(w(k)+ t>";dw3(k»BZ tpd 

-> l.91618 ... t pd and 2. RM\R) = 1 + 8 >";d + ... ->l. 

The coefficients in Hi) are similarly simplified. 
While Eq. (l7a) contributes only to charge transport 
("hopping"), (17b) is both spin-independent and irrelevant 
to charge transport, and is essentially constant? It is only 
(17 c) which is sensitive to the relative spins in neighboring 
cells. In strong-coupling, for adjacent sites (i,j) the first part 
of (17c) is {edG(Rij)-2tpd>"pdK(Ri)+U[2.RM3(R)M(R 

+ R;)]ni,-a}C~<TCj,a-> - (U12)gl>"~dC~aC),a. More dis
tant sites carry higher powers of >.. ~d and do not contribute in 
the limit. The replacement ni,-aC~a->niCia->c~O' which is 
used is exact in the strong-coupling limit.'1 Finally, the sec
ond part of (17c) provides the Hermitean conjugate of the 
first. 

Superexchange. The operators in Hij provide the matrix 
elements connecting any of the 64 conjoint low-lying states 
of any pair of cells (i,j). Superexchange, from (17c), only 
comes into play when adjacent sites are each occupied by a 
spin 112 doublet of the type,Z 

C* a* a* +~c* c* a* 15(T) = 1,0' I,-a 1,0' I,CT l,-CT l,a 13* 13* 10). 
I .,)1 + ~z l,j 1.1 

The effective spin-dependent interaction is found to take the 
form I( (Ti' (Tj - 114). For non-nearest-neighbor sites, (17c) 
is proportional to higher powers of >";d and vanishes in the 
limit. The nearest-neighbor superexchange parameter I is 
given by the following formula: 

There are no additional contributions to the superexchange. 
Once we have proceeded to the limit, the magnitude of g2 is 
not constrained. We can therefore define a third coupling 
constant g 3 == g 2 Z g I' While holding g 3 constant we set g 1 at 
some arbitrarily small value Ig d~ 1 [so as to retain the ad
vantageous SO(4) symmetry of the earlier modeIZ] and set 
g2=(g3/gl)1/2. This double-limiting procedure results in I 
= g/t* with g3 essentially arbitrary. 

Charge transport. When the antiferromagnet is hole 
doped, the occupation number of some cells must drop to 
less than 5. Cells containing four particles in a singlet state 
labeled 14>i' known as "Zhang-Rice singlets," are the most 
stable: 

With gl->O, the number of 4's and of 5's are separately 
conserved quantities. A 14>i configuration at R; can be per
muted with a 15(T» at R j , resulting in an effective matrix 
element for charge transport and procuring a width to a con
duction band. The operator for such a process is found in 
(l7a) and its matrix element is 
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teft<Rij) = (5 T I i® (4Ij{t pdT(Rij)( ct Taj, T + at TC j, T)} 

XI5T)j®14)i 

1 + gl 13 
=6t*T(0)T(R i) 1 2 --->6t*T(0)T(R i) (20) 

-gl 

becoming identical with Ref. 2 after we proceed to the 
double limit 

TCR ij ), a Green function defined following Eq, (ll), de
creases with distance and oscillates in sign, With 8=(±1,0) 
or (0, ± 1) a nearest-neighbor vector and 8' = (± 1, ± 1) a next
nearest neighbor vector, define t= teff(8), t' = f eff(8'). We use 
known2 values of T(R) to obtain the figure of merit in the 
f-J model,ll Jlt= 1.8626g/. It depends only on the arbi
trary value assigned to g 3 . 

In the extended model there exists a second ratio or figure 
of merit, f'lf. For optimum fit to a number of experiments, 

Ip' W. Anderson, Phys. Rev. 115,2 (1959); N. L. Huang and R. 
Orbach, ibid. 154,487 (1967); D. E. Rimmer, J. Phys. C 2, 329 
(1969). 

2D. C. Mattis, Mod. Phys. Lett. B 8,1387 (1994); Phys. Rev, Lett. 
74, 3676 (1995). 

30r O(t~dlledlaU~da) with a=O, 1,2,3 which are all equivalent 
in our model. 

4It must be remarked that if in leading order there were found 
some essential or accidental degeneracies, such degeneracies 
could be lifted even by nominally small, higher-order terms. But 
there are no such degeneracies among the low-lying states, 
therefore calculations based on the limit model are qualitatively 
correct (and perhaps even quantitatively accurate) provided only 
that U ddY t pdY t*. 

5In the free atom (ion), the ionization potential of Cu2+ (roughly 
corresponding to -ed) is 36.8 eV and U dd= 16.5 eV, but the 
former is reduced by an order of magnitude in the oxide, while 
the latter is often estimated to lie in the range 0(5 eV). 

6Because these are two-center integrals, they do not automatically 
vanish despite the differing symmetries of the two orbitals. 

7With these parameters, in the limit the occupation number of each 
d orbital is quite close to 1, (ni)=I::'::e. There are two sources 
for the small quantity e: virtual excitations yield O(t;dIU~d)' 
and nonorthogonality 0[g22CltpdIIUdd)' Thus, in effect the op
erator n i = I in the limit. 

8Some knowledgeable readers may object to the neglect of their 
favorite matrix elements such as Px-P y overlap, two- and three
center integrals including U pd ,U pp' , ... etc. None of these are 

Dagotto ll estimates this ratio to be in the range -0.3 to 
-0.4. An independent fit by Fehrenbacher and Norman12 es
timates this same ratio to be -0.275. Unlike the value of J 
which remains arbitrary (albeit positive and restricted to 
nearest neighbors), the band structure is uniquely determined 
in our model. Using Eq. (20) we find t' It= -0.168. This 
should be considered good agreement-any small amount of 
p-p overlap easily brings it into compliance with either ex
perimental estimate. Finally, as no two configurations can 
share the same cell, there comes into play an effective "hard
core" repulsion which is one of the principal attributes of the 
f-J and t-f' -J models. 

Conclusion. We derived a t-t' -J model from microscopic 
first principles in the strong-coupling limit We find J>O, 
that it is restricted to nearest-neighbor sites, its magnitude 
being a sensitive blend of overlap and energy parameters 
best obtained from experiment I,ll 

necessary for the generic arguments in the present paper and 
their inclusion only results in bogging down the presentation. In 
a forthcoming publication [J. M. Wheatley and D. C. Mattis 
(unpublished)], we present a more complete exposition in which 
we show that it is possible to flesh out the bare-bones model by 
including numerous additional orbitals and interaction param
eters, using extensive computer programming adapted to the 
limit model. With such computer assistance one hopes to fit the 
documented properties of any specific HTS perovskite in some 
detail. 

9For present purposes it is not necessary to know the Wannier 
functions for the nonbonding 13k band. With the choice of pa
rameters in our model the coefficients of any operators which 
relate to the 13k band are =0 in the Hamiltonian and therefore 
they disappear from the present analysis, reappearing only when 
one computes interactions with the electromagnetic field such as 
in optical absorption [D. C. Mattis and 1. M. Wheatley (unpub
lished)] or when P-P interactions are introduced into the model. 

IOWith characteristic length goc(ln 1IA ;d) -I. 
II See reviews by E. Dagotto, Rev. Mod. Phys. 66, 763 (1994) and 

W. Brenig, Phys. Rep. 253, 155 (1995) for surveys and compari
sons with experiment of the parameters in t-J and t-t' -J mod
els. 

12R. Fehrenbacher and M. R. Norman [Phys. Rev. Lett. 74, 3884 
(1995)] fit parameters of band structure and of a structured at
tractive short-range potential, to observed superconducting prop
erties. 


