35,120 research outputs found

    System and method for moving a probe to follow movements of tissue

    Get PDF
    An apparatus is described for moving a probe that engages moving living tissue such as a heart or an artery that is penetrated by the probe, which moves the probe in synchronism with the tissue to maintain the probe at a constant location with respect to the tissue. The apparatus includes a servo positioner which moves a servo member to maintain a constant distance from a sensed object while applying very little force to the sensed object, and a follower having a stirrup at one end resting on a surface of the living tissue and another end carrying a sensed object adjacent to the servo member. A probe holder has one end mounted on the servo member and another end which holds the probe

    Structural and elastic characterization of Cu-implanted SiO₂ films on Si(100) substrates

    Get PDF
    Cu-implanted SiO₂ films on Si(100) have been studied and compared to unimplanted SiO₂ on Si(100) using x-ray methods, transmission electron microscopy, Rutherford backscattering, and Brillouin spectroscopy. The x-ray results indicate the preferred orientation of Cu {111} planes parallel to the Si substrate surface without any directional orientation for Cu-implanted SiO₂∕Si(100) and for Cu-implanted and annealedSiO₂∕Si(100). In the latter case, transmission electron microscopy reveals the presence of spherical nanocrystallites with an average size of ∼2.5 nm. Rutherford backscattering shows that these crystallites (and the Cu in the as-implanted film) are largely confined to depths of 0.4−1.2 μm below the film surface. Brillouin spectra contain peaks due to surface, film-guided and bulk acoustic modes. Surface (longitudinal) acoustic wave velocities for the implanted films were ∼7% lower (∼2% higher) than for unimplanted SiO₂∕Si(100). Elastic constants were estimated from the acoustic wave velocities and film densities. C₁₁ (C₄₄) for the implanted films was ∼10% higher (lower) than that for the unimplanted film. The differences in acoustic velocities and elastic moduli are ascribed to implantation-induced compaction and/or the presence of Cu in the SiO₂ film.B.J. and M.C.R. are grateful for financial support from the Australian Synchrotron Research Program, funded by the Commonwealth of Australia. M.C.R. would also like to thank the Australian Research Council for their financial support. The financial support of the Natural Sciences and Engineering Research Council of Canada NSERC is gratefully acknowledged by G.T.A. and J.S

    Sound Propagation in Elongated Bose-Einstein Condensed Clouds

    Full text link
    We consider propagation of sound pulses along the long axis of a Bose-Einstein condensed cloud in a very anisotropic trap. In the linear regime, we demonstrate that the square of the velocity of propagation is given by the square of the local sound velocity, c2=nU0/mc^2=nU_0/m, averaged over the cross section of the cloud. We also carry out calculations in the nonlinear regime, and determine how the speed of the pulse depends on its amplitude.Comment: 4 pages, revtex, 3 eps figure

    What Makes Educational Campaings Succeed?

    Get PDF
    PDF pages:

    Analog model for an expanding universe

    Full text link
    Over the last few years numerous papers concerning analog models for gravity have been published. It was shown that the dynamical equation of several systems (e.g. Bose-Einstein condensates with a sink or a vortex) have the same wave equation as light in a curved-space (e.g. black holes). In the last few months several papers were released which deal with simulations of the universe. In this article the de-Sitter universe will be compared with a freely expanding three-dimensional spherical Bose-Einstein condensate. Initially the condensate is in a harmonic trap, which suddenly will be switched off. At the same time a small perturbation will be injected in the center of the condensate cloud. The motion of the perturbation in the expanding condensate will be discussed, and after some transformations the similarity to an expanding universe will be shown.Comment: Presented at the 4th Australasian conference on General Relativity and Cosmology, Monash U, Melbourne, 7-9 January 200

    Interparticle interactions:Energy potentials, energy transfer, and nanoscale mechanical motion in response to optical radiation

    Get PDF
    In the interactions between particles of material with slightly different electronic levels, unusually large shifts in the pair potential can result from photoexcitation, and on subsequent electronic excitation transfer. To elicit these phenomena, it is necessary to understand the fundamental differences between a variety of optical properties deriving from dispersion interactions, and processes such as resonance energy transfer that occur under laser irradiance. This helps dispel some confusion in the recent literature. By developing and interpreting the theory at a deeper level, one can anticipate that in suitable systems, light absorption and energy transfer will be accompanied by significant displacements in interparticle separation, leading to nanoscale mechanical motion
    corecore