9,468 research outputs found

    Dense matter equation of state for neutron star mergers

    Full text link
    In simulations of binary neutron star mergers, the dense matter equation of state (EOS) is required over wide ranges of density and temperature as well as under conditions in which neutrinos are trapped, and the effects of magnetic fields and rotation prevail. Here we assess the status of dense matter theory and point out the successes and limitations of approaches currently in use. A comparative study of the excluded volume (EV) and virial approaches for the npαnp\alpha system using the equation of state of Akmal, Pandharipande and Ravenhall for interacting nucleons is presented in the sub-nuclear density regime. Owing to the excluded volume of the α\alpha-particles, their mass fraction vanishes in the EV approach below the baryon density 0.1 fm−3^{-3}, whereas it continues to rise due to the predominantly attractive interactions in the virial approach. The EV approach of Lattimer et al. is extended here to include clusters of light nuclei such as d, 3^3H and 3^3He in addition to α\alpha-particles. Results of the relevant state variables from this development are presented and enable comparisons with related but slightly different approaches in the literature. We also comment on some of the sweet and sour aspects of the supra-nuclear EOS. The extent to which the neutron star gravitational and baryon masses vary due to thermal effects, neutrino trapping, magnetic fields and rotation are summarized from earlier studies in which the effects from each of these sources were considered separately. Increases of about 20%(≳50%)20\% (\gtrsim 50\%) occur for rigid (differential) rotation with comparable increases occurring in the presence of magnetic fields only for fields in excess of 101810^{18} Gauss. Comparatively smaller changes occur due to thermal effects and neutrino trapping. Some future studies to gain further insight into the outcome of dynamical simulations are suggested.Comment: Revised manuscript with one additional figure and previous Fig. 4 replaced, 19 additional references and new tex

    Discrete element weld model, phase 2

    Get PDF
    A numerical method was developed for analyzing the tungsten inert gas (TIG) welding process. The phenomena being modeled include melting under the arc and the flow in the melt under the action of buoyancy, surface tension, and electromagnetic forces. The latter entails the calculation of the electric potential and the computation of electric current and magnetic field therefrom. Melting may occur at a single temperature or over a temperature range, and the electrical and thermal conductivities can be a function of temperature. Results of sample calculations are presented and discussed at length. A major research contribution has been the development of numerical methodology for the calculation of phase change problems in a fixed grid framework. The model has been implemented on CHAM's general purpose computer code PHOENICS. The inputs to the computer model include: geometric parameters, material properties, and weld process parameters

    Unparticle physics in diphoton production at the CERN LHC

    Full text link
    We have considered the di-photon production with unparticle at LHC. The contributions of spin-0 and spin-2 unparticle to the di-photon production are studied in the invariant mass and other kinematical distributions, along with their dependencies on the model dependent parameters. The signal corresponding to the unparticle is significant for moderate coupling constant values.Comment: 17 pages, 15 eps figure

    Pseudo-scalar Higgs Boson Production at Threshold N3^3LO and N3^3LL QCD

    Full text link
    We present the first results on the production of pseudo-scalar through gluon fusion at the LHC to N3^3LO in QCD taking into account only soft gluon effects. We have used the effective Lagrangian that describes the coupling of pseudo-scalar with the gluons in the large top quark mass limit. We have used recently available quantities namely the three loop pseudo-scalar form factor and the third order universal soft function in QCD to achieve this. Along with the fixed order results, we also present the process dependent resummation coefficient for threshold resummation to N3^3LL in QCD. Phenomenological impact of these threshold N3^3LO corrections to pseudo-scalar production at the LHC is presented and their role to reduce the renormalisation scale dependence is demonstrated.Comment: 34 pages, 17 figure

    Crop Insurance Premium Recommendation System Using Artificial Intelligence Techniques

    Get PDF
    Purpose: The objective of this study is to build a crop insurance premium recommender model which will be fair to both crop insurance policy holders and crop insurance service providers.   Theoretical Framework: The Nonparametric Bayesian Model (modified) is the name of the proposed model suggested by Maulidi et al. (2021) and it consists of six variables which are regional risk, cultivation time period, land area, claim frequency, discount eligibility (local variable) and premium. Discount eligibility variable is introduced to encourage right farming practices among farmers.   Design/methodology/approach: Descriptive research method is used in this study as it is used to accurately represent the characteristics of a group of items. The population for this study is 943 respondents. The entire dataset is used for in-depth and accurate analysis. Five Artificial Intelligence models (Machine Learning models) are proposed for crop insurance premium prediction and they are Ada Boost Regressor, Gradient Boosting Regressor, Extra Trees Regressor, Support Vector Regressor and K-Neighbors Regressor. Among them Gradient Boosting Regression model has given the highest accuracy. Thus, Gradient Boosting Regression model is the most suitable model to be recommended for crop insurance premium prediction.   Findings and Suggestions: Regional risk, land area, claim frequency and cultivation time period is the order of independent variables from highest to least in terms of regression coefficient. This relative importance helps Non-Banking Financial Companies (NBFCs) to suggest farmers that they should concentrate most on the regional risk or chances of crop failure in a particular region in which they are doing agriculture and least on the cultivation time period of a crop or the season in which a crop is cultivated. Two suggestions for future researchers are to extend this research work to other parts of Tamil Nadu and to apply hybrid machine learning techniques to the proposed model.   Practical Implication: Unlike the existing formula-based traditional method used for calculating crop insurance premium, artificial intelligence models (machine learning models) can automatically learn the changes that take place with respect to the nature of variables in the proposed model and improve its accuracy based on new data. Hence, the crop insurance premium suggested by the most accurate model among the artificial intelligence models used in this study will be fair to both NBFCs and farmers. Here, fair means moderate. On the other hand, the crop insurance premium suggested by the existing formula-based method may not be fair in the long term as they cannot automatically learn the changes that take place with respect to the nature of variables in the proposed model and improve.   Originality/value: In this research article, the relative importance of independent variables in the proposed model is determined and it helps NBFCs to suggest farmers that they should concentrate most on the region they are doing agriculture and least on the cultivation time period of a crop. Additionally, a machine learning model which can automatically learn and improve itself is used and hence the crop insurance premium predicted by it will be fair. Finally, the entire population containing 943 respondents details is analysed
    • …
    corecore