		en e	os://ntrs.nasa.gov/search.jsp	?R=19870007608 2020-03-2	0T12:47:18+00:00Z
\			· · · · · · · · · · · · · · · · · · ·		
				·····	
			-		
	a su salaa di sa sa	a a construction of the second s	1 and 1 and		
		,			<u> </u>
					Ì
<u> </u>					
Υ.					
	_			-	Į
			-	·····	······································
1				<u>\</u>	
					1
	,/ ·		/		<u> </u>
	/				
- 💼					
х. Х.				· · · · · · · · · · · · · · · · · · ·	J.
					<u>\</u>
			2		\
					$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$
					$\langle \cdot \rangle$
and data (L	· · · · · · · · · · · · · · · · · · ·		·····
		1			\sim 1
· · · · · · · · · · · · · · · · · · ·				·····	· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·		a market of the second state
					<u> </u>
	ж				
		/			
—		/			
	1. A.				
					i V
	1361-67 170000		/		
M M	CDEL DUACE C	DISCRETE ELEMEN	TWELD	N87-17041	
	Terica The 1	inal Report (CHA	M of North		
	Lerica, Inc.)	22 p	CSCL 13H		
				Unclas	
			GJ	/37 43859	
, 				/	
				(
-			madalina -f.H		
Con	sulting services for	or mathematical r	noaeling of tiul		
flow	haat transfer and	Vor chemical rea	ction processes		

now, near transfer, and/or chemical reaction processes.

4

CHAM OF NORTH AMERICA, INCORPORATED

1525-A Sparkman Drive Huntsville, Alabama 35816 Telephone 205/830-2620

DISCRETE ELEMENT WELD MODEL, PHASE II

FINAL REPORT

by

C. PRAKASH, M. SAMONDS and A.K. SINGHAL

JANUARY 1987

4036/6

PREPARED FOR:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER ALABAMA 35812

> NASA COR: DR. A. NUNES CONTRACT NUMBER: NAS8-36716

PREFACE

This is the final report for the project "Discrete Element Weld Model, Phase II" conducted by CHAM of North America, Inc. under NASA contract No. NAS8-36716.

The authors acknowledge the contributions of Dr. Arthur Nunes (NASA MSFC) by useful discussions relating to the practical aspects of the welding problem, and Dr. Vaughan Voller (University of Minnesota) by discussions of numerical methodologies for phase change problems.

ABSTRACT

A numerical method has been developed for analyzing Tungsten Inert Gas (TIG) welding process. The phenomena being modeled include melting under the arc and the flow in the melt under the action of buoyancy, surface tension, and electromagnetic forces. The latter entails the calculation of the electric potential and the computation of electric current and magnetic field therefrom. Melting may occur at a single temperature or over a temperature range, and the electrical and thermal conductivities can be a function of temperature.

Results of sample calculations are presented and discussed at length. A major research contribution of the present study has been the development of numerical methodology for the calculation of phase change problems in a fixed grid framework.

The model has been implemented on CHAM's general purpose computer code PHOENICS. The inputs to the computer model include:

- a) Geometric parameters:
 - Physical dimensions of the computational domain which includes plate width and thickness
- b) Material properties:
 - Thermal conductivity which could be a function of temperature
 - Electrical conductivity which could also be a function of temperature
 - Specific heat
 - Latent heat of fusion
 - Density
 - Surface tension, and its variation with temperature
 - Liquidus and solidus temperatures
- c) Weld process parameters:
 - Current density distribution
 - Potential

- Weld speed
- Acceleration of gravity
- Surface heat losses specified in terms of thermophysical properties of the ambient air

The outputs of the computer model include:

- a) Scalar fields of:
 - Pressure
 - Temperature and enthalpy
 - Electric potential
 - Thermal conductivity
 - Electrical conductivity
- b) Vector fields of:
 - Fluid velocity
 - Electric current
 - Magnetic field

The output is produced as numbers in a tabulated manner. In addition, all output is stored in a formatted file which can be read by the CHAM graphics package (GRAFFIC) for making contour/vector plots. Both PHOENICS and GRAFFIC are available to NASA MSFC on its computer network.

TABLE OF CONTENTS

		Page	
1.	INTR	ODUCTION	1
2			1
۷.	MATH	EMATICAL FORMULATION	1
	2.1	Coordinate System	1
	2.2	Simulation of the solid Liquid System	1 2
	2.3	Boverning Equations	2
	2.4	Boundary conditions 2-	3
3.	NUME	RICAL METHODOLOGY 3-:	1
	3.1	The Finite Difference Methodology	1
	3.2	Methodology for Handling Phase Change	1
	3.3	Modeling of the Mushy Region 3-	8
	2000		1
4.	PRUG	KAM DETAILS	1
	4.1	General comments	1
	4.2	The Grid Layout	1
	4.3	The stab by stab solution procedure/Notes on the Magnetic Field	2
			Л
	4.4		4
	4.5	INE GROUND ROUTINE 4-	9
5.	RESU	JLTS OF A SAMPLE RUN	1
	5.1	The Flow Field	1
	5.2	The Temperature Field	5
	5.3	The Electric Field and Current 5-	5
	5.4	Other Field Variables5-	9
6.	CONC	UDING REMARKS	1
••	6 1	Summa ry	1
	6.2	Suggestions for Further Work	1
7.	REFE	ERENCES	1
8.	NOME	NCLATURE	1

APPENDIX 1	Listing of the Q1 File	A1 – 1
APPENDIX 2	Listing of the GROUND Routine	A2-1
APPENDIX 3	Listing of the OUTPUT File	A3-1

Section 1 INTRODUCTION

The science of welding is an important research area because of its industrial importance and the growing need of automation. Though the mathematical equations governing the basic phenomena have been known, their complex nature has prevented predictions for practical problems. However, due to the advances in the field of computational fluid dynamics over the past decade, the situation is changing; now, it is possible to use numerical methods to solve the complex, interlinked, and highly non-linear equations governing a welding process. The work described in this report is an example of such an effort. The welding process being investigated is called TIG (Tungsten Inert Gas) or GTA (Gas Tungsten Arc). The configuration is described schematically in Figure 1.

The TIG process involves a source of heat (arc) moving laterally over the joint in the surface to be welded. As a consequence of intense heating, the material under the arc melts giving rise to liquid puddle; and, as the arc moves away, the melt re-solidifies, resulting in the welding of the joint. Thus, in a stationary coordinate system, the melt puddle moves with the arc. The quality of the weld depends on the size and shape of the puddle, which, in turn, depends upon the nature of the fluid motion inside the melt. This fluid motion is caused by the action of buoyancy, surface tension (Marangoni), arc shear, and electromagnetic stirring (Lorentz) forces. Thus, a quantitative prediction of the TIG process must take account of all of these processes.

As phase I of this study, Martin Marietta Corporation [1]* have assembled the differential equations which govern various mechanisms in the TIG process. The objective of the present study, phase II, has been to develop a methodology for the numerical solution of these equations.

A comprehensive literature survey related to TIG modeling has been presented in [1]. Hence, the review here will be brief. References [2 - 15] include

^{*}Number in square brackets indicate references cited in Section 7.

some key papers. Of these, references [11] and [12] contain a broad experimental and theoretical background of the relevant physics. Earliest attempts to model the problem involved solution to the heat conduction equation with a moving point source [15]. Convection in the puddle was accounted for by an enhanced value of the thermal conductivity in the liquid region [4, 5, 6, 10]. The latent heat effects were not included in these studies. In a series of papers, Kuo et al [8, 9] have analyzed the problem using the enthalpy method taking into account the effects of latent heat and variable properties. Excellent puddle contour agreement has been obtained but, the weak link is the artificially enhanced thermal conductivity in the liquid region. Procedures for obtaining weld pool shapes from an interface heat balance have been carried out by Malmuth [14]. Also, there are some complimentary theoretical predictions for the flow in the weld puddle. However, in these, the shape of the puddle is assumed known, and the convective velocities are driven by idealized distribution of electric and magnetic fields. A recent example of this approach are the calculations by Atthey [13].

In terms of completeness and detail, the very recent works of Kuo and Wang [2, 3] comes closest to the present study. The key difference lies in the fact that Kuo and Wang [2, 3] employ a two-dimensional axisymmetric solution for the calculation of the electromagnetic forces. In the present study, all three components of the magnetic field are evaluated, and complete account is taken of the nonlinear coupling that could arise when the electrical conductivity depends upon the temperature.

Section 2 MATHEMATICAL FORMULATION

2.1 Coordinate System

Viewed in the stationary coordinates, the problem is inherently unsteady. However, if the coordinate system is attached to the moving arc, then the problem becomes steady. In the present study, the latter approach was used. Thus, the weld pool and the arc remain fixed in space while the weld material enters and leaves the computational domain. Strictly, for such a steady state to exist, the weld plate should be infinitely long in the direction of the arc motion. While the assumption of a very long weld plate is satisfactory, computationally, however, one must have a finite size of the domain in the xdirection. Thus, the domain size ℓ in the arc direction is arbitrary as long as it is large enough to ensure that a further increase in ℓ does not significantly affect the solution of the melt puddle.

2.2 Simulation of the Solid-Liquid System

In Martin Marietta's report [1], a distinction is retained between the liquid puddle and the solid regions. In the present work, no such distinction is made. The entire material is regarded as a continuum, and the solid portion is modeled as a fluid of infinitely large viscosity. The large viscosity prevents any shear in the solid so that the velocity becomes uniform there. Since it is not known apriori as to which portion of the computational domain is solid or liquid, the viscosity is adjusted iteratively from the examination of the prevailing temperature solution. All other thermophysical properties of the media can vary and are iteratively updated.

The following two features are important for a proper treatment of large discontinuities in properties of the solid and liquid region: (i) use of a control volume type finite difference approach; and (ii) more importantly, use of harmonic average of exchange coefficients to compute diffusive fluxes at the faces of the control volumes. Details of these practices may be found in the textbook [16] and a related publication [17] by Patankar.

2.3 Governing Equations

With this understanding of the preceding subsection, and the nomenclature listed in Section 8, the governing equations are [1]:

Continuity:

$$\frac{\partial}{\partial x} (\rho u) + \frac{\partial}{\partial y} (\rho v) + \frac{\partial (\rho w)}{\partial z} = 0$$
 (1)

Momentum:

$$\frac{\partial}{\partial x} \left[\rho u u\right] + \frac{\partial}{\partial y} \left[\rho v u\right] + \frac{\partial}{\partial z} \left[\rho w u\right] = G_{x} + F_{x} - \frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left[\mu \frac{\partial u}{\partial x}\right] + \frac{\partial}{\partial y} \left[\mu \frac{\partial u}{\partial y}\right] + \frac{\partial}{\partial z} \left[\mu \frac{\partial u}{\partial z}\right]$$
(2)

$$\frac{\partial}{\partial x} \left[\rho u v\right] + \frac{\partial}{\partial y} \left[\rho v v\right] + \frac{\partial}{\partial z} \left[\rho w v\right] = G_{y} + F_{y} - \frac{\partial p}{\partial y} + \frac{\partial}{\partial x} \left[\mu \frac{\partial v}{\partial x}\right] + \frac{\partial}{\partial y} \left[\mu \frac{\partial v}{\partial y}\right] + \frac{\partial}{\partial z} \left[\mu \frac{\partial v}{\partial z}\right]$$
(3)

$$\frac{\partial}{\partial x} \left[\rho uw\right] + \frac{\partial}{\partial y} \left[\rho vw\right] + \frac{\partial}{\partial z} \left[\rho ww\right] = G_{z} + F_{z} - \frac{\partial p}{\partial z} + \frac{\partial}{\partial x} \left[\mu \frac{\partial w}{\partial x}\right] + \frac{\partial}{\partial y} \left[\mu \frac{\partial w}{\partial y}\right] + \frac{\partial}{\partial z} \left[\mu \frac{\partial w}{\partial z}\right]$$
(4)

Enthalpy:

$$\frac{\partial}{\partial x} [\rho uh] + \frac{\partial}{\partial y} [\rho vh] + \frac{\partial}{\partial z} [\rho wh] = S_{h} + \frac{\partial}{\partial x} [\frac{k}{c_{p}} \frac{\partial h}{\partial x}] + \frac{\partial}{\partial y} [\frac{k}{c_{p}} \frac{\partial h}{\partial y}] + \frac{\partial}{\partial z} [\frac{k}{c_{p}} \frac{\partial h}{\partial z}]$$
(5)

Electric Potential:

$$\frac{\partial}{\partial x} \left[\sigma \ \frac{\partial \phi}{\partial x} \right] + \frac{\partial}{\partial y} \left[\sigma \ \frac{\partial \phi}{\partial y} \right] + \frac{\partial}{\partial z} \left[\sigma \ \frac{\partial \phi}{\partial z} \right] = 0$$
(6)

In the present study, the specific heat \boldsymbol{c}_p is taken to be a constant. The

density ρ is also taken to be a constant except for the calculation of buoyancy force components (G_x , G_y , G_z) where the Boussinesq approximation is employed [1]. Thus, in the coordinate system shown in Figure 1:

$$G_{x} = 0 \tag{7}$$

$$G_{y} = \frac{\rho g \beta}{c_{p}} (h - h_{ref})$$
(8)

$$G_{z} = 0 \tag{9}$$

The electromagnetic $\vec{F} = F_x \cdot \hat{i} + F_y \cdot \hat{j} + F_z \cdot \hat{k}$ is given by:

$$\vec{F} = \vec{J} \times \vec{B} \tag{10}$$

Where \hat{J} represents the electric current density given by:

$$\mathbf{J} = -\sigma \, \mathbf{\nabla} \, \boldsymbol{\phi} \tag{11}$$

and \vec{B} is the magnetic induction computed using the Biot-Savart law [1].

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{r}') \times (\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}|^3} dv'$$
(12)

The term S_h in the enthalpy equation is related to the efflux of latent heat energy; details of this term will be discussed in Section 3.2 dealing with the proposed methodology for solution of phase change problems on a fixed grid system. Since the fluid velocity in the puddle is quite small, viscous dissipation and compression work terms are neglected in the enthalpy equation.

2.4 Boundary Conditions

To complete the problem, boundary conditions are needed for all the variables. The conditions used in the present study are:

$$u = s \tag{13}$$

$$\mathbf{v} = \mathbf{0} \tag{14}$$

Assuming arc velocity = $-s\hat{i}$

$$w = 0 \tag{15}$$

$$h = c_p T_{in}$$
(16)

$$\frac{\partial \varphi}{\partial x} = 0 \tag{17}$$

Where T_{in} represents the temperature of the material entering the calculation domain. If the computational domain is extended sufficiently far in front of the arc, then $T_{in} \approx T_{air}$, the ambient air temperture. However, since the thermal conductivity of the weld material is quite high, one may need to go quite far in front of the arc before $T_{in} \approx T_{air}$ approximation is valid. Therefore, option has been left open for the user to provide T_{in} as he/she may deem fit⁺.

Exit Plane: x = L

At the exit plane, the solid (re-solidified) material leaves the computational domain. A procedure to delink the effect of conditions downstream of the exit plane on happening within the computational domain would be to use the "outflow" boundary treatment described by Patankar [16] and recommended in the Phase I report [1]. The mathematical statement of this treatment is:

$$\frac{\partial h}{\partial x} = 0 \tag{19}$$

$$\frac{\partial \phi}{\partial x} = 0 \tag{20}$$

As for the velocity components, the boundary condition in this <u>solid</u> region would be the same as at x = 0, namely

u =	:	S	S	(21)
v =	: 1	0	0	(22)
w =	:	0	0	(23)

⁺At times, an experimental value may be the best one to use.

2-4

Symmetry Surface: z = 0

The conditions are:

w = 0	(24)
$\partial u / \partial z = 0$	(25)
$\partial v / \partial z = 0$	(26)
∂h/∂z = 0	(27)
$\partial \phi / \partial z = 0$	(28)

Bottom Surface of the Plate: y = t

v = 0 (29) $\partial u / \partial y = 0$ (30) $\partial w / \partial v = 0$ (21)

$$\frac{\partial w}{\partial y} = 0 \tag{31}$$

$$-\frac{k}{c_{p}}\frac{\partial h}{\partial y} = \frac{h_{t}}{c_{p}}\left[h - c_{p}T_{air}\right]$$
(33)

For the region near the bottom surface which is solid, the b.c. $\frac{\partial u}{\partial y} = \frac{\partial w}{\partial y} = 0$ will be equivalent to $u = u_s$, w = 0. As suggested in [1], the bottom surface is assumed insulated to any electric current. The convective boundary condition on the energy equation is to allow for natural convection heat loss to the ambient air. Thus, h_t is a heat transfer coefficient between the plate surface and the ambient air. Following [18] define a characteristic length:

$$d = \frac{\ell x 2r}{2[\ell + 2r]}$$
(34)

which, for a large ℓ , would give d \simeq r. Define a Rayleigh number Ra_d as:

$$Ra_{d} = \frac{g \beta_{air} d^{3} Pr_{air}}{\sum_{vair}^{2} r_{air}} \left(\frac{h_{s}}{c_{p}} - T_{air}\right)$$
(35)

where $h_{\rm S}/c_{\rm p}$ is the temperature of the plate surface.

A suitable correlation for the heat transfer coefficient \mathbf{h}_{t} is:

$$Nu_{d} = h_{t} \frac{d}{k_{air}} = m Ra_{d}^{n}$$
(36)

where m = 0.27 (37)

$$n = 0.25$$
 (38)

Due to the presence of the surface enthalpy h_s in the definition of the Rayleigh number, the boundary condition is non-linear. However, this poses no difficulty since the entire problem is non-linear and is to be solved iteratively. Thus, the latest h values are used to iteratively update h_s .

Top Surface: y = 0

$$\mathbf{v} = \mathbf{0} \tag{39}$$

$$-\mu \frac{\partial u}{\partial y} = \frac{d\gamma}{dT} \cdot \frac{\partial T}{\partial x} = \frac{1}{c_p} \frac{\partial \gamma}{\partial T} \frac{\partial h}{\partial x}$$
(40)

$$-\mu \frac{\partial w}{\partial y} = \frac{d\gamma}{dT} \cdot \frac{\partial T}{\partial z} = \frac{1}{c_p} \frac{\partial \gamma}{\partial T} \frac{\partial h}{\partial z}$$
(41)

$$-\frac{k}{c_{p}}\frac{\partial h}{\partial y} = q_{s} - \frac{n_{t}}{c_{p}}(h_{s} - c_{p}T_{air})$$
(42)

$$-\sigma \frac{\partial \phi}{\partial y} = j_{s}$$
 (43)

The top surface of the plate is assumed to be planar. The quantity γ represents the surface tension, and $d\gamma/dT$ represents the surface tension variation with temperature. Thus, boundary conditions (40) and (41) are included to account for the Marangoni forces. The gradients of h are iteratively updated from the most current available solution for h.

 q_s in equation (42) represents heat source due to the arc. Assuming a gaussian distribution, q_s is given by:

$$q_{s} = \frac{3 n V I}{\pi a^{2}} \exp \left[\frac{(x - x_{o})^{2} + z^{2}}{-a^{2}/3}\right]$$
(44)

The second term on the r.h.s. of (42) represents heat loss by natural convection to the ambient. The heat transfer coefficient h_t is obtained from equations (34 - 36) except that for the top surface [18]:

$$m = 0.54; n = 0.25 \text{ for } Ra_d < 10^7$$
(45)

$$m = 0.15; n = 0.33 \text{ for } Ra_d > 10^7$$
(46)

The electric current due to the arc $\boldsymbol{J}_{\boldsymbol{S}}$ is given by:

$$J_{s} = \frac{3I}{\pi b^{2}} \exp \left[\frac{(x - x_{0})^{2} + z^{2}}{-b^{2}/3}\right]$$
(47)

End Surface: z = r

$$w = 0 \tag{48}$$

$$\frac{\partial u}{\partial z} = 0 \tag{49}$$

$$\frac{\partial \mathbf{v}}{\partial z} = 0 \tag{50}$$

$$-\sigma \frac{\partial \phi}{\partial z} = \frac{1}{\ell t} \int_{x=0}^{\ell} \int_{z=0}^{r} j_{s} dx dz$$
(51)

$$\frac{\partial h}{\partial z} = 0 \tag{52}$$

Thus, the incoming electric current is assumed to exit from the end surface uniformly. The surface is assumed to be insulated to the flow of heat.

Section 3 NUMERICAL METHODLOLOGY

3.1 The Finite Difference Methodology

The numerical model described in the previous section has been implemented on CHAM's general-purpose flow analysis code, PHOENICS [19]. PHOENICS employs a fully conservative control-volume-finite-difference formulation. Thus, as described by Patankar [16], the computational domain is divided into a family of non-overlapping parallelipiped control volumes (see Figure 2). At the center of each control volume is a grid node, and the purpose of the computation is to predict value of all variables at the grid nodes. The governing differential equations are discretized by integrating them over control volumes and expressing the convective and diffusive fluxes in terms of values of the variables at the grid nodes. This process results into a system of algebraic equations in which the unknowns are the values of the variable at the grid nodes. These algebraic equations are then solved using a variety of procedures.

Pressure and all other variables are stored at the center of control volumes. However, velocity components are staggered in their respective directions and stored at the surface of the main control volumes. The coupling between velocity and pressure (momentum and continuity) is handled iteratively using variants of the SIMPLE algorithm [16].

Since the entire problem is non-linear, an iterative solution scheme is used. Thus, one variable is solved for at a time using the most currently available values of all other variables. Thermophysical properties, like thermal or electric conductivity, which may depend upon field variables like temperature, are iteratively updated.

3.2 Methodology for Handling the Phase Change

Voller [20] has discussed various computational procedures for solving phase change problem. He has also suggested an attractive procedure for solving phase change problems using a fixed-grid-control-volume formulation like the

3-1

3-2

one employed in PHOENICS. In the present study, Voller's method has been extended to solve the problem at hand. Details of this procedure will now be described.

The total enthalpy H is considered to be the sum of sensible ($h = c_p T$) and latent heat (ΔH) components. That is,

$$H = h + \Delta H \tag{53}$$

where ΔH is bounded in the range

$$0 \leq \Delta H \leq L$$
 (54)

L being the latent heat of phase change. The value of ΔH in a cell indicates the following:

$$\Delta H = 0 \qquad \Rightarrow all solid \tag{55}$$

$$\Delta H = L \qquad \Rightarrow all liquid \qquad (56)$$

$$0 < \Delta H < L \Rightarrow \text{ solid fraction: } 1 - \frac{\Delta H}{L}$$
(57)
liquid fraction: $\frac{\Delta H}{L}$

Whereas the sensible heat h can be transferred both by convection and diffusion, the latent heat ΔH participates only in convection. Thus, the eqution for conservation of enthalpy is:

$$\frac{\partial}{\partial x} \left[\rho u \left(h + \Delta H \right) \right] + \frac{\partial}{\partial y} \left[\rho v \left(h + \Delta H \right) \right] + \frac{\partial}{\partial z} \left[\rho w \left(h + \Delta H \right) \right]$$
$$= \frac{\partial}{\partial x} \left[\frac{k}{c_p} \frac{\partial h}{\partial x} \right] + \frac{\partial}{\partial y} \left[\frac{k}{c_p} \frac{\partial h}{\partial y} \right] + \frac{\partial}{\partial z} \left[\frac{k}{c_p} \frac{\partial h}{\partial z} \right]$$
(58)

which can be rewritten as:

$$\frac{\partial}{\partial x} \left[\rho uh\right] + \frac{\partial}{\partial y} \left[\rho vh\right] + \frac{\partial}{\partial z} \left[\rho wh\right] = S_{h} + \frac{\partial}{\partial x} \left[\frac{k}{c_{p}} \frac{\partial h}{\partial x}\right] + \frac{\partial}{\partial y} \left[\frac{k}{c_{p}} \frac{\partial h}{\partial y}\right] + \frac{\partial}{\partial z} \left[\frac{k}{c_{p}} \frac{\partial h}{\partial z}\right]$$
(59)

where $S_{h} = -\frac{\partial}{\partial x} \left[\rho u \Delta H\right] - \frac{\partial}{\partial y} \left[\rho v \Delta H\right] - \frac{\partial}{\partial z} \left[\rho w \Delta H\right]$ (60)

Thus, the consequence of latent heat ΔH is to create a source term in the equation for the sensible enthalpy. Note that this term will be zero when there is no phase change since then ΔH is uniform. S_h may be regarded as the net efflux of latent heat at a point.

Consider the control cell shown in Figure 3. While discretizing the enthalpy equation for the node P, the integrated form of source term S_h would be:

source of
$$\Delta H = \Delta y \Delta z [(\rho u)_{w} (\Delta H)_{w} - (\rho u)_{e} (\Delta H)_{e}]$$

+ $\Delta x \Delta z [(\rho v)_{s} (\Delta H)_{s} - (\rho v)_{n} (\Delta H)_{n}]$
+ $\Delta x \Delta y [(\rho w)_{b} (\Delta H)_{b} - (\rho w)_{t} (\Delta H)_{t}]$ (61)

where the subscripts w, e, s, n, b and t refer to the different faces of the control volume.

The next task is to relate the value of (ΔH) at the control volume faces to the values at the grid nodes. In this regard, the donor cell upwinding, technique [16] is most appropriate. Thus,

 $\Delta H_{W} = \Delta H_{W} \text{ if } u_{W} > 0 \tag{62}$ $\Delta H_{P} \text{ if } u_{W} < 0$

and likewise for ΔH at e, s, n, b and t.

Given a distribution of ΔH , the enthalpy equation (59) can be solved to determine h. Hence the remaining issue is that of obtaining ΔH from the computed h solution. At this stage the nature of phase change comes into the picture.

Let T_s^* and T_l^* be the solidus and liquidus temperatures respectively. Define a phase change temperature T_c^* as:

$$T_{c}^{*} = 1/2 (T_{s}^{*} + T_{\ell}^{*})$$
 (63)

and the phase change temperature interval ε as:

Figure 3. A typical grid node P and its associated control volume. E, W, N, S, B and T are neighbors of P; e, w, n, s, b, t designate the control volume faces.

$$\varepsilon = 1/2 \left(T_{\ell}^{*} - T_{S}^{*} \right)$$
(64)

As is customary, in the following, the temperature will be scaled with respect to T_c^* . Thus, h = 0 corresponds to $T = T_c^*$.

In general, h and ΔH could be related in a complex manner on the range $-\varepsilon c_p < h < \varepsilon c_p$ (see Figure 4). In the present study, a simple linear relationship between the two has been assumed; thus:

$$\Delta H = 0 \qquad \text{for } h < -\varepsilon c_p \qquad (65)$$

$$\Delta H = L \qquad \text{for } h > \varepsilon c_p \qquad (66)$$

$$\Delta H = L \cdot \frac{[h + \varepsilon c_p]}{[2 \varepsilon c_p]} \quad \text{for } -\varepsilon c_p < h < \varepsilon c_p \qquad (67)$$

The equation is pictorially represented in Figure 4.

The iterative procedure used for updating ΔH from the current h values has evolved from the work of Voller [20] and the more recent study of Voller and Prakash [21]. Thus, let a superscript k refer to an iteration number k. With a distribution $(\Delta H)^k$, let the h obtained by solving Equation (59) be represented by h^k. Then for the (k+1) iteration, ΔH at each point is obtained from:

$$(\Delta H)^{k+1} = (\Delta H)^{k} + h^{k} - \frac{c_{p} \cdot \varepsilon}{L} [2 (\Delta H)^{k} - L]$$
(68)

with the bounds

 $0 < \Delta H^{k+1} < L \tag{69}$

It is clear from equation (68) that once the solution has converged, ΔH and h will satisfy the governing relation (65 - 67).

The isothermal phase change case can be simulated by setting the solidus and liquidus temperatures equal. Then, $\varepsilon = 0$, and equation 68 gives:

$$\left(\Delta H\right)^{k+1} = \left(\Delta H\right)^{k} + h^{k} \tag{70}$$

3-6

Figure 4. Phase Change Characteristics

•

۰.

$$0 \leq \Delta H^{k+1} \leq L$$

which is the same equation as developed first by Voller [20]. Physically, equation (70) is the requirement that h = 0 [i.e. the temperature is equal to the phase change temperature] for a partially melted cell.

3.3 Modeling of the Mushy Region

The behavior of a fluid in the mushy region $(T_s^* < T < T_\ell^*)$ can be a subject of independent research; important aspects to be considered would include the morphology of the dendritic solid-fluid interface. Needless to say that such an effort would require close validation with experimental data. Due to these difficulties, most analytical attempts for solving phase change problems have sought to ignore the detailed modeling of the mushy region. Generally, a 'numeric fix' is employed which ensures proper behavior at the two extremes, viz-a-viz, the solid must immobolize while the liquid must be free to flow.

Voller [20] has summarized a number of procedures for modeling the mushy region. The most commonly used method [2, 3] is to let the fluid viscosity increase monotonically from the liquid value μ_{ℓ} to a large value μ_{s} in the solid over the temperature range $T_{\ell}^{*} \rightarrow T_{s}^{*}$. Alternately [20] one could provide momentum sink terms which increase as the solid is approached. Voller and Prakash [21] regard the mushy region as a porous media and employ the Ergun equation [22] in a Darcy law framework.

In the present study, a rather simple minded approach has been adopted. Thus, the viscosity μ is set to a large value μ_s for temperture T < T_c^{*} while the liquid value μ_g is used for T > T_c^{*}. As already mentioned, PHOENICS uses the harmonic averaging technique to compute interface diffusion fluxes [16, 17] so that large discontinuities in the value of μ can be handled in a manner that ensures proper evaluation of interface shear/heat flux etc.

3-8

(71)

Section 4 PROGRAM DETAILS

4.1 General Comments

As already mentioned, the model has been implemented on the PHOENICS code which is available on the NASA-MSFC computer network. The code is well documented [19] and it is assumed that the reader has some familiarity with the code and that he/she knows how to execute it on his/her system.

PHOENICS consists of a problem independent part EARTH which remains fixed. Any particular problem is specified via an input file Q1 and a routine GROUND. This section describes the Q1 and the GROUND files which were developed to implement the weld problem.

Ease of use has been kept in focus while preparing the Q1 and the GROUND files. Indeed, all of the important input quantities are separated in clearly cordoned areas so that for most of the day-to-day parametric studies a user has to merely change the necessary numbers.

All coding in standard FORTRAN IV.

4.2 The Grid Layout

As shown in Figure 2, the computational domain is discretized into a family of control volumes. Further details of the domain discretization for the present problem are shown in Figure 5.

The coordinate system is attached to the left-front-top corner. The center of the arc is supposed to be located at:

x = LX1 + (LX2)/3 z = 0y = 0

The computational domain extends a distance:

2 (LX2)/3 + LX3

behind the arc in the x direction. The distance LX2 may be regarded as the "fine-grid" region under the arc.

In a likewise manner, the grid in the z direction is kept finer near the arc. Thus LZ1 is a small "fine-grid" distance followed by LZ2 where a coarse grid is used. Of course, LZ1 + LZ2 must equal the half width r of the weld plate.

In the vertical, y direction, LY represents the plate thickness t.

A non-uniform grid, with finer grid under the arc, can be affected by the proper choice of various distances and the number of cells in different sections. The latter are specified by:

- NX1,NX2,NX3 : Number of cells in the x-direction in lengths LX1, LX2 and LX3, respectively. The integer number NX2 should be divisible by 3.
- NZ1,NZ2 : Number of cells in the z-direction in lengths LZ1, LZ2, respectively.

NY : Number of cells in the y-direction.

4.3 <u>The Slab by Slab Solution Procedure/Notes on the Magnetic Field</u> Calculation

PHOENICS solves any problem in a slab by slab fashion in the z-direction. One pass through all the NZ slabs in the computational domain constitute a SWEEP. The total number of sweeps is provided by the user via a PHOENICS variable LSWEEP.

It was established through some trial runs that the computation of the magnetic field \tilde{B} with the Biot-Savart law is very time consuming. Hence the

following practice has been adopted.

- For the first NLOR sweeps (NLOR specified by the user), the problem is solved without taking account of the magnetic forces.
- At the end of the NLORth sweep, the magnetic field \vec{B} is computed once-for-all with the then available electric current density \vec{J} .
- From sweeps (NLOR+1) → LSWEEP the Lorentz forces is included in the problem. Though the magnetic field is being kept fixed, the current density J is still updated.

It should be noted that if the electric conductivity, σ , is a constant, then the above procedure is entirely satisfactory. Only when σ depends on the temperature, so that the electrical problem is coupled with the thermofluid problem, does one loose the very secondary effect of changes in \vec{B} over the sweeps (NLOR + 1) + LSWEEP. Considering that this secondary effect is insignificant and that the computational time saving is enormous, the above practice is highly recommended.

4.4 The Input File Q1

Most of the problem specification is provided via the input file Q1. A listing of the Q1 file is provided in Appendix 1. As described in [19], the Q1 file is divided into 24 groups for a clean organization of the data. A brief description of various groups follows.

Real/Integer Decleration

The top few lines contain the real/integer decleration of variales for local use in the Q1 file using the PIL (PHOENICS Instruction Language).

Input Block

For the convenience of the user, all input data has been cordoned at the top in an area marked INPUT BLOCK. A description is provided of different

4-4

variables, and a system of units is listed. For most of the day-to-day work, a user would only have to change the appropriate numbers in the input block; the coding in the remaining groups has been kept general enough so that no changes are necessary unless a special need arises.

As will be noted, the thermal and electrical conductivities of the weld material are <u>not</u> specified in the input block. Since these properties can be functions of temperature, coding for them is provided separately in the GROUND routine; details will be discussed in the next section.

Miscellaneous Calculation

Following the input block, some miscellaneous calculations are made. TPC refers to the phase change temperature and EPSIL = $c_p \in$. The enthalpy h is scaled to make the phase change temperature equal to zero; thus, TPC is being subtracted from other input temperatures.

Group 1

A suitable title is being provided which appears at the top of the outputs.

Group 2

Since the present problem is steady, nothing needs to be done in this group.

Group 3 - 5

The method of pairs [19] is being used to deploy the grid pattern described in Section 4.2.

Group 6

Not needed.

Group 7

A decleration is being made regarding the variables to be solved for. Thus the pressure (P1), the velocity components (U1, V1, W1), the sensible enthalpy (H1) and the electrical potential (C2 or EPOT) are being solved for. As already mentioned, the sensible enthalpy is being scaled to make the phase change temperature zero. Various Ys and Ns in the SOLUTN command indicate various solution options [19]. Thus, the last Y in the SOLUTN commend for (U1, V1, W1, H1 and C2) indicates use of harmonic averaging of exchange coefficients to obtain diffusion flux.

Besides the variables solved for, a number of auxiliary arrays are being stored for printout purposes. Thus, the latent heat ΔH is stored in PHOENICS array C1, the components of the electrical current flux in arrays C3 \rightarrow C5, the magnetic induction in arrays C6 \rightarrow C8, and the thermal and electric conductivity in arrays C9 and C10, respectively. In addition, the temperature T and the material kinematic viscosity ν are also being stored in arrays TMP1 and ENUL, respectively. The temperature TMP1 is in actual units, i.e.:

$$TMP1 = \frac{H1}{c_p} + TPC$$

In other words, TMP1 is not being scaled with respect to TPC.

Group 8

Since the electric potential is governed by the Laplace equation, the convection terms are being deactivated. In addition, in built source terms for the enthalpy equation are being switched off. These source terms relate to viscous dissipation, etc.

Group 9

The thermophysical properties are being specified. Those, which depend upon the temperature, will be provided in the GROUND routine.

Group 10

Not needed.

Group 11

Variables are being initialized to start the iterative solution procedure.

Group 12

Not needed.

Group 13

In PHOENICS, boundary conditions are handled by appropriate simulation of sources and sinks [19]. All boundary conditions are provided in this section.

The patches INLET and OUTLET refer to plane x=0 and $x=\ell$ respectively (Figure 1). At the patch ZEROP, reference values of the pressure and the electric potential are being prescribed. At one point in the solid, the fluid velocity is being fixed via the patch FIXVEL; the large viscosity will then propagate this value at other points in the solid. The patch HEAT is used to prescribe the heat and current flux at the plane y=0. The outflow of electric current through the plane z=r is provided via the patch JZOUT. The patch SPECIAL is employed for the provision of latent heat related source term S_h in the enthalpy equation. The buoyancy, Marangoni and electromagnetic forces are provided via the patches BUOY, MRNGN and LORENTZ respectively. Finally, the heat loss through the upper and lower surfaces are provided in patches HTLOSUPS and HTLOSLOS, respectively.

Group 14

Not needed.

Groups 15 - 18

To monitor and control the convergence behavior of the iterative solution procedure, PHOENICS allows the use of various underrelaxing devices and traps on the minimum and maximum values, etc. Details may be found in [19]. For the sample run, the velocities are being underrelaxed using the inertial underrelaxation factor FALSDT = 10^{-4} .

Whenever a solution tends to diverge a user may need to reduce the values underrelaxation parameters. To gain experience, some runs with various underrelaxation parameters is necessary.

Group 19

The necessary integer and real variables are being transferred to the GROUND station.

Groups 20 - 23

Since the output of this three dimensional problem can be rather bulky, a user may need to make a judicious choice of various print control parameters. Thus ECHO = T or F will decide whether or not the Q1 file will be reproduced at the top of the output. As the iterations proceed, values of all the variables at the cell IXMON, IYMON and IZMON are printed out; if the solution is well converged, then these values must change by a smaller and smaller amount with repeated sweeps. The variable NPLT controls the frequency (in terms of number of sweeps) with which the monitoring values are printed.

To monitor the solution as the sweeps are progressing, residue of the finite difference equations of the variables being solved are printed out every TSTSWPth sweep. These residuals are normalized by rather small numbers, so that large values should not cause any alarm; for a well converging solution, it is only necessary that these residuals decrease by a few orders of magnitude, regardless of their absolute values.

NUMCLS sets the number of columns in the output. ITABL = 3 produces the table

4-8

and line-plot of the residuals and the monitoring values with sweep number.

The field printout is produced for cells $IX = IXPRF \rightarrow IXPRL$ at intervals of NXPRIN. Similarly in the y and z directions.

A typical output would contain, in order:

- the Q1 file settings if ECHO = T
- residuals every TSTSWPth sweep
- field printout over the range IXPRF + IXPRL; IYPRF + IYPRL;
 IZPRF + IZPRL
- Table and plot of monitoring values with sweep number
- Table and plot of residuals

Group 24

The results are being saved in a file called ARCA for post processing by the GRAPHICS package [23]. The values stored in ARCA are for the entire field, not just the printout window set by IXPRF, IXPRL, etc.

4.4 The GROUND Routine

As explained in [19], the GROUND routine is also divided into 24 groups for tidy organization of the input. The listing of the GROUND routine for the present problem is provided in Appendix 2. For most of the day-to-day work, the user would not need to make any changes in GROUND.

Dimensions

Near the top of the GROUND routine, dimensions are declared of local array variables. A user must ensure that NXD, NYD and NZD defined via the PARAMETER statement are equal to the total number of computational cells in the x, y and z directions, respectively.

Group 1

The integer and reals variable transferred from the Q1 file are being recovered in easily recognizable names.

Groups 2 - 8

Nothing is being done.

Group 9

The material viscosity and the electrical and thermal conductivity values are being updated using the prevailing temperature find.

Groups 10 - 12

Nothing is being done.

Group 13

The boundary condition which depends on variables being solved for in a nonlinear way are being updated.

Groups 14 - 18

Nothing is being done here.

Group 19

Some constants are being calculated in Section 1. In Section 3, the required geometrical information is being accessed from EARTH. Section 6 is used to update the value of latent heat ΔH every sweep; this is followed by the calculation of electric current flux and the magnetic field.

Groups 20 - 24

Nothing is being done.

The Functions GTHCND; GELCND

The functions GTHCND and GELCND calculate the thermal and the electrical conductivity as a function of temperature respectively. A table of the temperature versus the conductivity values is rovided via the data statements. For any input temperature, the routine calculates the conductivity value by a local interpolation of the data. The quantity N, specified via the parameter statement, identifies the number of data points in the table. If it is intended that the conductivity be uniform, then all the conductivity values in the data list should be set equal.
Section 5 RESULTS OF A SAMPLE RUN

The Q1 and the GROUND files in Appendices 1 and 2 contain the data for the sample run. The property data has been taken from the report of Martin Marietta [1] with some guidance from the work of Kuo and Wang [2, 3]. The listing of the output file is included in Appendix 3. The results have also been post processed using CHAM's graphic package PHOTON [23], and are presented in Figures 6 - 9. In order to avoid the output from becoming too bulky, the results have been "windowed" over the region of molten puddle; thus, the printout is obtained for IX = 6 + 20; IZ = 1 + 5; IY = 1 + 5 only. In the same spirit, the graphical results in Figures (6 + 8) have been magnified, but focused over the puddle region only.

We present here results of only one sample case which takes into account all the generalities of the model. The reader is referred to our earlier monthly progress reports [24 - 25] where a number of limiting situations were discussed such as buoyancy acting alone, Marangoni force acting alone, Lorentz force acting alone, two of these acting in different pairs, etc. In these reports, comparisons were also made with the results of [2, 3] and [26].

5.1 The Flow Field

Figure 6 presents the velocity vector plots as viewed from the side; i.e. on vertical plans of constant z. Figures 7(a) and 7(b) present the vector flow field as viewed from top, i.e. on horizontal planes of constant y.

As discussed in [24 - 25],

- Buoyancy forces create an upward motion under the arc (hot fluid rising up) and a downward flow away from arc (cold fluid settling down).
- Marangoni forces create the flow in the same direction as buoyancy since the fluid is hottest (least surface tension) under the arc and colder (greater surface tension) away from the arc.

5-1

5-2

constant y. Arc center at x = 9 cm; y = 0; z = 0.

Figure 7(b). Isotherms and velocity vector plots on horizontal planes of constant y. Arc center at x = 9 cm; y = 0; z = 0.

• Electromagnetic, i.e. Lorentz forces, work the other way; i.e. Lorentz forces produce an downward motion under the arc.

As a consequence, when all three forces are present simultaneously, the flow can show a mixed behavior depending upon the <u>net</u> force at each point. For the case of Figures 6 - 7 this mixed behavior is clearly demonstrated; generally, though, the flow appears to be downwards under the arc. Maximum flow velocities were \sim 30 cm/sec.

The velocities must decrease as one proceeds away from the arc; this is clearly shown in Figures 6 - 7 where the velocity vectors reduce to dots (small magnitude) at large IY and large IZ.

5.2 The Temperature Field

Isotherms, i.e. contours of constant temperature, are also plotted in Figures 6 - 7. The important isotherms to be noted are the ones corresponding the liquidus temperature $T_{g}^{*} = 650^{\circ}$ C and the solidus temperature $T_{s}^{*} = 547^{\circ}$ C. The region $T_{s}^{*} < T < T_{g}^{*}$ can be regarded as the mushy zone. As was discussed in Section 3.3, in the present study, the liquid is allowed to flow freely for $T > T_{c}^{*} = \frac{1}{2} (T_{g}^{*} + T_{s}^{*}) = 598.5^{\circ}$ C while it is totally immobolized (large μ) for $T < T_{c}^{*}$. Regarding T_{c}^{*} as the boundary of the mushy region, the maximum extent of the melt region may be estimated to be ~ 1.2 cm in the x direction, ~ 0.75 cm in the y direction, and ~ 0.3 cm in the z direction.

5.3 The Electric Field and Current

Via patch ZEROP [see Q1 listing in Appendix 1, Group 13], the reference value of the electric potential is being set to zero at a location IX = NX/2; IY = NY/2 and IZ = 1. Contours of electric potential are presented in Figures 8 and 9. Also included are contour lines of the electric flux component.

As expected, the gradients of the electric potential are larger under the arc where the current flow is the highest. This in in evidence in Figure 8(a) and in the top panel in Figure 9. In regions away from the arc, like Figure 8b

5-5

у

Electric Current Flux Component J_z

Figure 8(b). Electric field at plane IZ=10; z=11.8 cm. Arc center at x = 9 cm; y = 0; z = 0.

y

Figure 9. Electric field at the horizontal planes of constant y. Arc center at x = 9 cm; y = 0; z = 0. and the lower panel in Figure 9, the variation in the potential is much smaller and so is the magnitude of the flux component.

5.4 Other Field Variables

Other field variables, including the electrical and thermal conductivity which can be function of temperature, are tabulated in the results included in Appendix 3. As will be noted, both the thermal conductivity (THCN) and the electrical conductivity (ELCN) vary significantly in the puddle region. The values are, of course, constrained within the limits of the data reported in [1].

Section 6 CONCLUDING REMARKS

6.1 Summary

The equations governing the TIG (or GTA) welding process have been solved numerically using a finite difference approach. The methodology has been implemented on CHAM's PHOENICS code which is available to NASA MSFC on its computer network.

Most of the essential features of the TIG modeling have been accounted for. These include melting under the arc, and the computation of the motion in the weld puddle due to the action of buoyancy, surface tension (Marangoni), and electromagnetic (Lorentz) forces. Results of a sample calculation are discussed at length.

The coding is in standard Fortran. The input data block has been clearly delineated for ease of change by the user.

6.2 Suggestions for Further Work

Following is a list of suggestions for further work on the proposed model. Such work would be best done at CHAM if appropriate resources are provided; alternately, it could be done in-house at NASA under close collaboration with CHAM.

- (1) The model must now be subjected to an extensive parametric study. This should be preceded by a rigorous grid refinement exercise to identify the number and distribution of grid nodes which produces results of acceptable engineering accuracy.
- (2) It would be appropriate to examine alternate ways of determining the magnetic field \dot{B} . As has been discussed, the use of Biot ~ Savart law is computationally very demanding. Thus, it might be appropriate to use the two-dimensional axisymmetric expressions employed by Kuo and Wang [2, 3]. This does not, however, mean that the electric flux \dot{J} should also be

computed as in [2, 3]; i.e. one could use \tilde{B} from [2, 3] but still compute \tilde{J} with proper account of dependence of the electrical conductivity on the temperature, etc.

- (3) A closer study of various models for flow in the mushy region would be a very valuable exercise. Nothing is available in the literature on this topic, so that a serious study could produce original ideas.
- (4) Extension to transient problems would be an important next step.

Section 7

REFERENCES

- S.C. Traugott, <u>Discrete Element Weld Model</u>, <u>Phase I: General Model of a</u> <u>Weld Puddle Without a Cavity</u>, Final report by Martin Marietta Corporation, prepared for NASA, Contract No. NAS8-35773, 1985.
- S. Kou and Y.H. Wang, "Computer Simulation of Convection in Moving Arc Weld Pools", Metallurgical Transactions, in press, 1986.
- 3. S. Kou and Y.H. Wang, "Weld Pool Convection and Its Effect", Welding Journal, Volume 65, No. 3, 1986, pp 63s 70s.
- N.S. Tsai and T.W. Eagar, "Changes of Weld Pool Shape by Variations in the Distribution of Heat Source in Arc Welding", in <u>Modeling of Casting and</u> <u>Welding Processes, II</u>, The Metallurgical Society of AIME, 1984, pp 317-328.
- 5. C.L. Tsai, "Finite Source Theory", in <u>Modeling of Casting and Welding</u> Processes II, The Metallurgical Society of AIME, 1984, pp 329 - 334.
- C.A. Hou and C.L. Tsai, "Theoretical Analysis of Weld Pool Behavior in the Pulsed Current GTAW Process", in <u>Transport Phenomenon in Materials</u> Processing, Proc. of ASME Winter Annual Meeting, Boston, 1983, pp 117-127.
- A.C. Nunes, Jr., "An Extended Rosenthal Weld Model", Welding Journal, Vol. 62, No. 6, 1983, pp 165s-1705.
- S. Kou and Y. Le, "Three-Dimensional Heat Flow and Solidification During the Autogeneous GTA Welding of Aluminum Plates", Metallurgical Transactions, Volume 14A, 1983, pp 2245 - 2253.
- 9. S. Kou, "Welding, Glazing and Heat Treating A Dimensional Analysis of Heat Flow", Metallurgical Transactions, Volume 13A, 1982, pp 363-371.
- 10. G.M. Ecer, M. Downs, H.D. Brody and A. Gokhale, "Heat Flow Simulation of

7-1

Pulsed Current Gas Tungsten Arc Welding", in <u>Modeling of Casting and</u> Welding Processes, The Metallurgical Society of AIME, 1981, pp 139-160.

- 11. W. Lucas, <u>Arc Physics and Weld Pool Behavior</u>, in two volumes, The Welding Institute, Abington Hall, Abington/Cambridge, 1980, 1981.
- 12. K. Masubuchi, Analysis of Welded Structures, Pergamon Press, 1980.
- D.R. Atthey, "A Mathematical Model for Fluid Flow in a Weld Pool at High Currents", J. Fluid Mechanics, Volume 98, No. 4, 1980, pp 787-801.
- 14. N.D. Malmuth, "Temperature Field of a Moving Point Source with Change of State", Int. J. Heat Mass Transfer, Volume 19, No. 4, 1976, pp 344-354.
- 15. D. Rosenthal, "The Theory of Moving Sources of Heat and Its Application to Metal Treatments", Trans. ASME, Volume 68, 1946, pp 849-866.
- 16. S.V. Patankar, <u>Numerical Heat Transfer and Fluid Flow</u>, Hemisphere Publishing Corporation, McGraw-Hill, New York, 1980.
- 17. S.V. Patankar, "A Numerical Method for Conduction in Composite Materials, Flow in Irregular Geometrics, and Conjugate Heat Transfer", Proceedings of 6th International Heat Transfer Conference, Toronto, 3, 1978, pp 279-285.
- F. Incropera and D.P. DeWitt, <u>Fundamentals of Heat Transfer</u>, John Wiley & Sons, New York, 1981.
- H.I. Rosten and D.B. Spalding, <u>PHOENICS Beginner's Guide and User</u> Manual, CHAM TR/100, 1986.
- 20. V.R. Voller, N.C. Markatos and M. Cross, "Techniques for Accounting for the Moving Interface in Convection/Diffusion Phase Change", in <u>Numerical</u> <u>Methods in Thermal Problems</u>, Volume 4, Editors R.W. Lewis and K. Morgan, Pineridge Press, Swansea, U.K., 1985, pp 595-609.
- 21. V.R. Voller and C. Prakash, "A Fixed Grid Numerical Modeling Methodology

for Convection/Diffusion Mushy Region Phase Change Problems", Int. J. Heat Mass Transfer, in review, 1986.

- 22. J. Szekely, Fluid Flow Phenomena in Metals Processing, Academic Press, 1979.
- M.R. Malin, <u>GRAFFIC:</u> An Instruction Manual, CHAM TR/71a, 1983. Also see: D.B. Spalding, H.I. Rosten, D.R. Glynn and J.P. Edwards, <u>Lecture</u> Panels for Use of Body-Fitted Coordinates in PHOENICS, CHAM TR/126, 1986.
- 24. M. Samonds, C. Prakash and A.K. Singhal, "Discrete Element Weld Model, Phase II Progress Report for May 1986", CHAM 4036/2, June 1986.
- 25. M. Samonds, C. Prakash and A.K. Singhal, "Discrete Element Weld Model, Phase II Progress Report for June 1986", CHAM 4036/3, July 1986.
- 26. G.M. Oreper and J. Szekely, "Heat and Fluid Phenomena in Weld Pools", J. Fluid Mechanics, Volume 147, 1984, pp 53 - 79.

Section 8

NOMENCLATURE

a	Heat radius of the arc, Egn. (44)
b	Electric current radius of the arc, Egn. (45)
₿	$(B_x \hat{i} + B_y \hat{j} + B_z \hat{k})$, the magnetic field
с _р	Specific heat of the weld material
d	Characteristic length, Egn. (34)
Ē	$(F_x \hat{i} + F_y \hat{j} + F_z \hat{k})$, the electromagnetic force in the puddle
g	Acceleration due to gravity
Ğ	$(G_x \hat{i} + G_y \hat{j} + G_z \hat{k})$, buoyancy force in the puddle
h	Sensible enthalpy (= c _p T)
h _{ref}	Reference enthalpy
∆H	Latent heat energy related with phase change
н	Total enthalpy (= h + ∆H)
î	Unit vector along the x-direction
I	Arc current
ĵ	Unit vector along the y-direction
Ĵ	$(J_x \hat{i} + J_y \hat{j} + J_z \hat{k})$, the electric current flux
Js	The electric current flux due to the arc at the plate surface
ĥ	Unit vector along the z-direction
k	Thermal conductivity of the weld material
^k air	Thermal conductivity of the ambient air
L	Extent of the computational domain in the arc (x) direction
L	Latent heat of phase change
m	Constant in the Nusselt number \sim Rayleigh number relation, Egn. (36)
n	Constant in the Nusselt number ~ Rayleigh number relation, Egn. (36)
^{Pr} air	Prandtl number for ambient air

q _s	Heat flux due to the arc at the plate surface
r	Half of plate width; width = 2r; Figure 1
S	Arc speed
S _h	Source term in the equation for sensible enthalpy to account for latent heat effects, Egns. (59 - 60)
t	Weld plate thickness, Figure 1
т	Temperature
T _{air}	Ambient air temperature
T _{in}	Weld plate temperature at the inlet plane
T_ℓ*	Liquidus temperature
T _s *	Solidus temperature
T _c *	$(T_s^* + T_{\ell}^*)/2$, the phase change temperature
u	Velocity component in the x-direction
v	Velocity component in the y-direction
V	Arc voltage
W	Velocity component in the z-direction
x	Coordinate along the direction of arc motion
×o	The x coordinates of the arc center
Δx	Width of a computational cell in the x-direction, Figure 3
У	Coordinate along plate depth
Δy	Width of a computational cell in the y-direction, Figure 3
z	Coordinate along plate width
Δz	Width of a computational cell in the z-direction, Figure 3
Greek	
β	Volumetric thermal expansion coefficient of the weld melt
^β air	Volumetric thermal expansion coefficient of the ambient air
Y	Surface tension of the weld melt

8-2

ε	Half of the phase change temperature range = $1/2 (T_{\ell}^* - T_{S}^*)$
η	Arc efficiency, Egn. (44)
μ	Viscosity of the weld material
μ _o	Permeability of free space
ν	Kinematic viscosity of the weld material
^v air	Kinematic viscosity of ambient air
ρ	Density of the weld material
^p air	Density of the ambient air
σ	Electrical conductivity
φ	Electric potential

Subscripts

w,s,n,e,b,t Location of different control volume faces, Figure 3

APPENDIX 1

Listing of the Q1 File

ORIGINAL PAGE IS OF POOR QUALITY

TALK=F, REAL(LX REAL(AB REAL(TS REAL(GT INTEGER	RUN(1,1) 1,LX2,LX3,C BUOY,AGRAV,T LDS,TLQDS,I CAIR,GBTAIR, (NX1,NX2,N)	CP,LZ FREF, EPSIL ,GENA K3,NZ	1,LZ2, DGAMD3) IR,GPH 1,NZ2,	,SPEED,I F,VOLTS, RAIR,GKA ,NXFF,NX	IN, TPC, HIN, L AMPS, EFF, HRA IR) FL, NLOR)	SNUL,LATHT,GDEN)),JRAD,LY,PRMB)	****
*	••••						*
*		THE	MAIN	INPUT	BLOCK		*
*	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						*
*	VARIABLE			DESCRIE	TION	UNITS	*
*							*
*	NX1		No.	of cell	s in distance	2	*
*			LX1	(See Fi	g.5 in report	t)	*
*	NX2		No.	of cell	s in distance	e	*

^			~
*	NX1	No. of cells in distance	*
*		LX1.(See Fig.5 in report)	*
*	NX2	No. of cells in distance	*
*		LX2; NX2 should be divisible	*
*		by 3	*
*	NX3	No. of cells in distance	*
*		LX3	*
*	LX1	Computational domain length cm	*
*		in front of the arc.(See	*
*		Fig.5 in the report)	*
*	LX2	Computational domain length cm	*
*		in the x direction under the	*
*		arc	*
*	LX3	Computational domain length cm	*
*		behind the arc	*
*	NY	No. of cells in the y direc-	*
*		tion; the direction normal	*
*		to weld surface.(See Fig.5)	*
*	LY	Thickness of the weld plate cm	*
*	NZ1	No. of cells in distance LZ1	*
*		in the z direction	*
*	LZ1	Fine grid distance near arc cm	*
*		in the z direction. (See Fig.5)	*
*	NZ2	No. of cells in distance LZ2	*
*	LZ2	Distance in the z direction; cm	*
*		along the width of the weld	*
*	NLOR	The sweep number at which	*
*		the magnetic field is computed	*
*		and Lorentz forces turned on	* .
*	LSWEEP	Total number of sweeps to be	*
*		performed	*
*	CP	specific heat of the material J/(gm-	·C) *
*		being welded	*
*	SPEED	Arc speed Cm/s	*
*	LATHT	Latent heat of phase change J/gm	*
*	TSLDS	Solidus temperature C	*

A1-1

```
С
                        Liquidus temperature
  *
          TLQDS
                                                        С
                        Weld material temperature
          TIN
                        at inlet to the calculation
                        domain
                        Kinematic viscosity of the melt
                                                          (cm**2)/s
          LENUL
                        Density of the weld material
                                                         gm/(cm**3)
          GDEN
   *
                        Volumetric expansion coeff.
                                                         1/C
          ABUOY
                        for the melt
   *
                                                         cm/(s**2)
                        Acceleration due to gravity
          AGRAV
                        Reference tempertaure in the
                                                         С
           TREF
                        calculation of buoyancy force
                        in the melt
                        Rate of change of surface
                                                        dynes/(cm-C)*
   *
           DGAMDT
                        tension of the melt with
                        temperature
   *
                                                        Volts
           VOLTS
                        Arc voltage
                                                        Amps
                        Arc amperage
           AMPS
                        Arc efficiency
           EFF
                        The constant 'a' in the gaussian
                                                           сm
   *
           HRAD
                        heat flux distribution under arc
                        The constant 'b' in the gaussian
                                                           cm
           JRAD
   *
                        electric current distribution
   *
                        under the arc
                        Magnetic permeability
                                                    dynes/(cm**2)
           PRMB
   *
                        constant
   *
                        Ambient air temperature
                                                          С
           GTAIR
   *
                                                          1/C
                        Volumetric expansion coeff
           GBTAIR
   *
                        for air
   *
                                                          (cm**2)/s
                        Kinematic viscosity of air
   *
           GENAIR
                        Prandtl no. for air
           GPRAIR
                                                          W/cm-C
                        Thermal conductivity for air
           GKAIR
NX1=5, NX2=15, NX3=5
LX1=8., LX2=3., LX3=15.
NY=5, LY=1.
NZ1=5, NZ2=5, LZ1=1., LZ2=12.
NLOR=200, LSWEEP=400
CP=1.005, SPEED=0.34, LATHT=3.95E2
TSLDS=547.,TLQDS=650.,TIN=100.,LENUL=3.57E-3,GDEN=2.8
ABUOY=1.E-4,AGRAV=981.,TREF=600.,DGAMDT=-.35
VOLTS=15., AMPS=200., EFF=.76, HRAD=.2, JRAD=.2, PRMB=.126
GTAIR=20.,GBTAIR=3.E-3,GENAIR=.1589,GPRAIR=0.7,GKAIR=2.63E-4
   TPC=0.5*(TSLDS+TLQDS)
EPSIL=0.5*(TLQDS-TSLDS)*CP
TREF=TREF-TPC
HIN=(TIN-TPC)*CP
NXFF=NX1+1
NXFL=NX1+NX2
    GROUP 1. Run title
```

```
TEXT(NASA ARC WELDING SIMULATION)
    GROUP 2. Transience; time-step specification
    GROUP 3. X-direction grid specification
NX=NX1+NX2+NX3
XULAST=LX1+LX2+LX3
XFRAC(1) = -NX1, XFRAC(2) = LX1/(NX1 * XULAST)
XFRAC(3) = NX2, XFRAC(4) = LX2/(NX2 \times XULAST)
XFRAC(5) = NX3, XFRAC(6) = LX3/(NX3 \times XULAST)
    GROUP 4. Y-direction grid specification
GRDPWR(Y,NY,LY,1.)
    GROUP 5. Z-direction grid specification
NZ = NZ1 + NZ2
ZWLAST=LZ1+LZ2
ZFRAC(1) = -NZ1, ZFRAC(2) = LZ1/(NZ1 * ZWLAST)
ZFRAC(3) = NZ2, ZFRAC(4) = LZ2/(NZ2 \times ZWLAST)
    GROUP 6. Body-fitted coordinates or grid distortion
    GROUP 7. Variables stored, solved & named
SOLUTN(P1,Y,Y,N,N,N,N)
SOLUTN(U1, Y, Y, N, N, N, Y)
SOLUTN(V1, Y, Y, N, N, N, Y)
SOLUTN(W1, Y, Y, N, N, N, Y)
SOLUTN(H1,Y,Y,N,N,N,Y)
SOLUTN(C2, Y, Y, N, N, N, Y)
OUTPUT(H1,Y,N,N,Y,Y,Y)
OUTPUT(U1, Y, N, N, Y, Y, Y)
OUTPUT(V1, Y, N, N, Y, Y, Y)
OUTPUT(W1,Y,N,N,Y,Y,Y)
OUTPUT(P1,Y,N,N,Y,Y,Y)
OUTPUT(C2,Y,N,N,Y,Y,Y)
STORE(C1,C3,C4,C5,C6,C7,C8,C9,C10,TMP1,ENUL)
NAME(C1)=DELH; NAME(C2)=EPOT
NAME(C3)=JX; NAME(C4)=JY; NAME(C5)=JZ
NAME (C6) = BX; NAME (C7) = BY; NAME (C8) = BZ
NAME(C9) = THCN; NAME(C10) = ELCN
    GROUP 8. Terms (in differential equations) & devices
TERMS(EPOT, N, N, Y, N, Y, N)
TERMS(H1,N,Y,Y,N,Y,N)
     GROUP 9. Properties of the medium (or media)
ENUL=GRND
RHO1=GDEN
PRNDTL(H1) = -GRND
PRNDTL(EPOT) = -GRND
TMP1 = GRND2
TMP1A=TPC
TMP1B=1./CP
     GROUP 10. Inter-phase-transfer processes and properties
     GROUP 11. Initialization of variable or porosity fields
FIINIT(P1)=0.0
FIINIT(U1)=SPEED
```

FIINIT(V1) = 0.0FIINIT(W1)=0.0FIINIT(H1)=HIN FIINIT(DELH)=0.0GROUP 12. Convection and diffusion adjustments GROUP 13. Boundary conditions and special sources PATCH(INLET, WEST, 1, 1, 1, NY, 1, NZ, 1, 1) COVAL(INLET, P1, FIXFLU, SPEED*RHO1) COVAL(INLET, U1, ONLYMS, SPEED) COVAL(INLET, H1, ONLYMS, HIN) COVAL(INLET, EPOT, ONLYMS, SAME) PATCH(OUTLET, EAST, NX, NX, 1, NY, 1, NZ, 1, 1) COVAL(OUTLET, P1, FIXFLU, -SPEED*RHO1) PATCH(ZEROP,CELL,NX/2,NX/2,NY/2,NY/2,1,1,1,1) COVAL(ZEROP, P1, FIXP, 0.0) COVAL(ZEROP, EPOT, FIXVAL, 0.) PATCH(FIXVEL,CELL,1,1,1,1,1,1,1,1) COVAL(FIXVEL, U1, FIXVAL, SPEED) COVAL(FIXVEL,V1,FIXVAL,0.) COVAL(FIXVEL,W1,FIXVAL,0.) PATCH(HEAT, SOUTH, NXFF, NXFL, 1, 1, 1, NZ1, 1, 1) COVAL(HEAT, H1, FIXFLU, GRND) COVAL (HEAT, EPOT, FIXFLU, GRND) PATCH(JZOUT, HIGH, 1, NX, 1, NY, NZ, NZ, 1, 1) COVAL(JZOUT, EPOT, FIXFLU, GRND) PATCH(SPECIAL, CELL, 1, NX, 1, NY, 1, NZ, 1, 1) COVAL(SPECIAL, H1, FIXFLU, GRND) PATCH(BUOY, PHASEM, 1, NX, 1, NY, 1, NZ, 1, 1) COVAL(BUOY,V1,FIXFLU,GRND) PATCH(MRNGN, SOUTH, 1, NX-1, 1, 1, 1, NZ-1, 1, 1) COVAL(MRNGN, U1, FIXFLU, GRND) COVAL(MRNGN, W1, FIXFLU, GRND) PATCH(LORENTZ, VOLUME, NXFF, NXFL, 1, NY, 1, NZ1, 1, 1) COVAL(LORENTZ, U1, FIXFLU, GRND) COVAL(LORENTZ, V1, FIXFLU, GRND) COVAL(LORENTZ, W1, FIXFLU, GRND) PATCH(HTLOSUPS, SOUTH, 1, NX, 1, 1, 1, NZ, 1, 1) COVAL(HTLOSUPS, H1, GRND, CP*(GTAIR-TPC)) PATCH(HTLOSLOS, NORTH, 1, NX, NY, NY, 1, NZ, 1, 1) COVAL(HTLOSLOS, H1, GRND, CP*(GTAIR-TPC)) GROUP 14. Downstream pressure for PARAB=.TRUE. GROUP 15. Termination of sweeps GROUP 16. Termination of iterations GROUP 17. Under-relaxation devices RELAX(H1,LINRLX,1.0) RELAX(EPOT,LINRLX,1.0) RELAX(U1, FALSDT, .0001) RELAX(V1, FALSDT, .0001) RELAX(W1, FALSDT, .0001)

A1-4

```
GROUP 18. Limits on variables or increments to them
    GROUP 19. Special calls from EARTH to GROUND
IG(1)=NXFF, IG(2)=NXFL, IG(3)=N21, IG(4)=NLOR
RG(1) = LATHT, RG(2) = SPEED, RG(3) = LENUL, RG(4) = DGAMDT, RG(5) = CP
RG(6)=ABUOY*AGRAV*TREF, RG(7)=-ABUOY*AGRAV/CP
RG(8) = VOLTS, RG(9) = AMPS, RG(10) = EFF, RG(11) = HRAD, RG(12) = JRAD
RG(13) = LY \times XULAST, RG(14) = PRMB, RG(15) = EPSIL
RG(16) = GTAIR, RG(17) = GBTAIR, RG(18) = GENAIR, RG(19) = GPRAIR
RG(20) = GKAIR, RG(21) = AGRAV, RG(22) = XULAST, RG(23) = ZWLAST
RG(24) = TPC
    GROUP 20. Preliminary print-out
ECHO = F
    GROUP 21. Print-out of variables
    GROUP 22. Spot-value print-out
IXMON = (NXFF + NXFL)/2
IYMON=1
IZMON=1
TSTSWP=10000
    GROUP 23. Field print-out and plot control
NPLT=10
NUMCLS=5
ITABL=3
IPROF=3
IXPRF=6
IXPRL=20
NXPRIN=1
IYPRF=1
IYPRL=NY
NYPRIN=1
IZPRF=1
IZPRL=5
NZPRIN=1
    GROUP 24. Dumps for restarts
SAVE=T
NSAVE=ARCA
STOP
```

A1-5

APPENDIX 2

Listing of the GROUND Routine

ORIGINAL PAGE IS DE POOR QUALITY

PROGRAM MAIN

С	TH	HIS IS THE MAIN PROGRAM OF EARTH
C	FJ	ILE NAME GROUND.FTN16 July 1986
		(C) COPYRIGHT 1984, LAST REVISION 1986. CONCENTRATION HEAT AND MOMENTUM LTD. ALL RIGHTS RESERVED. This subroutine and the remainder of the PHOENICS code are proprietary software owned by Concentration Heat and Momentum Limited, 40 High Street, Wimbledon, London SW19 5AU, England.
c c c		PROGRAM MAIN
0000000000	1	The following two COMMON's, which appear identically in the satellite MAIN program, allow up to 25 dependent variables to be solved for (or their storage spaces to be occupied by other variables, such as density). If a larger number is required, the 25's should be replaced, in the next 8 lines, by the required larger number; and the 100 in COMMON/F01/ should be replaced by 4 times the required number. Numbers less than 25 are not permitted.
		COMMON/LGE1/L1(25)/LGE2/L2(25)/LGE3/L3(25)/LGE4/L4(25) 1/LDB1/L5(25)/IDA1/I1(25)/IDA2/I2(25)/IDA3/I3(25)/IDA4/I4(25) 1/IDA5/I5(25)/IDA6/I6(25)/GI1/I7(25)/GI2/I8(25)/HDA1/IH1(25) 1/GH1/IH2(25)/RDA1/R1(25)/RDA2/R2(25)/RDA3/R3(25)/RDA4/R4(25) 1/RDA5/R5(25)/RDA6/R6(25)/RDA7/R7(25)/RDA8/R8(25)/RDA9/R9(25) 1/RDA10/R10(25)/RDA11/R11(25) 1/GR1/R12(25)/GR2/R13(25)/GR3/R14(25)/GR4/R15(25) 1/IPIP1/IP1(25)/HPIP2/IHP2(25)/RPIP1/RVAL(25)/LPIP1/LVAL(25) 1/IFPL/IPL0(25)/RFPL1/ORPRIN(25)/RFPL2/ORMAX(25) 1/RFPL3/ORMIN(25)/RFPL4/CELAV(25) LOGICAL L1,L2,L3,L4,L5,DBGFIL,LVAL CHARACTER*4 IH1,IH2,IHP2,NSDA
c		COMMON/F01/I9(100) COMMON/DISC/DBGFIL EXTERNAL WAYOUT
	2	Set dimensions of data-for-GROUND arrays here. WARNING: the corresponding arrays in the MAIN program of the satellite (see SATLIT) must have the same dimensions. COMMON/LGRND/LG(20)/IGRND/IG(20)/RGRND/RG(100)/CGRND/CG(10) LOGICAL LG CHARACTER*4 CG
C C C	3	Set dimensions of data-for-GREX1 arrays here. WARNING: the corresponding arrays in the MAIN program of the satellite

(see SATLIT) must have the same dimensions. С COMMON/LSG/LSGD(20)/ISG/ISGD(20)/RSG/RSGD(100)/CSG/CSGD(10) LOGICAL LSGD CHARACTER*4 CSGD С Set dimension of patch-name array here. WARNING: the array C 4 NAMPAT in the MAIN program of the satellite must have the С С dimension. COMMON/NPAT/NAMPAT(100) CHARACTER*8 NAMPAT С Declare local CHARACTER variables. С CHARACTER NDUM4*4, NDUM6*6, NDUM15*15 С The numbers in the next two statements (which must be ident-C 5 ical) indicate how much computer memory is to be set aside С for storing the main and auxiliary variables. The user may С alter them if he wishes, to accord with the number of С grid nodes and dependent variables he is concerned with. С COMMON F(200000)NFDIM=200000 С C 6 Logical-unit numbers and file names, not to be changed. DBGFIL=.FALSE. CALL DSCEAR(14,LUPR3,' ',15,NDUM15,-1 CALL DSCEAR(6,LUDUM,' ',4,NDUM4,9,33) CALL DSCEAR(-10,LUSDA,' ',4,NSDA,0,0) ',15,NDUM15,-11,16) CALL DSCEAR(-14,LUPR1,' ',15,NDUM15,0,0) CALL DSCEAR(21,LUDST,' ',4,NDUM4,9,33) С User may here change message transmitted to logical unit С С LUPR3 CALL WRIT40 ('GROUND STATION IS GROUND.FTN 11 JULY 86 ') CALL MAIN1(NFDIM, LUPR1, LUPR3, LUSDA, NSDA) CALL WAYOUT(0) STOP END **~~~~~~~~~~~~~~~~~~~~~** SUBROUTINE GROSTA C (C) COPYRIGHT 1984, LAST REVISION 1986. CONCENTRATION HEAT AND MOMENTUM LTD. ALL RIGHTS RESERVED. С #include "satear" #include "grdloc" #include "grdear" C.... This subroutine directs control to the GROUNDs selected by С the satellite settings of USEGRX, NAMGRD & USEGRD. Subroutine GREX1 contains much standard material, eg. С С options for fluid properties, several turbulence models, С wall functions, etc.

A2-2

С IF(USEGRX) CALL GREX1 С C.... ESTER is for electrolytic-smelter modelling of the Hall-cell and Soderberg types used in the reduction of aluminium. С С IF(NAMGRD.EQ.'ESTR') CALL ESTRGR С C.... SCRS contains the simple-chemical-reaction-model of combustion, the theoretical basis of which is found in the С book "Combustion & Mass Transfer" by D B Spalding (1979) С This ground also contains geometrical features of a С simplified can combustor. С С IF(NAMGRD.EQ.'SCRS') CALL SCRSGR С C.... A more advanced model of a combustor is given in COMBGR. С IF(NAMGRD.EQ.'COMB') CALL COMBGR С C.... WJETGR shows how to represent non-isotropic effects in the turbulence of a wall jet. С С IF(NAMGRD.EQ.'WJET') CALL WJETGR С C.... TRACGR contains software for tracking fluid interfaces by means of a set of imaginary particles which follow the motion С С IF(NAMGRD.EQ.'TRAC') CALL TRACGR С C.... PARTGR is used to solve for the motion of particles slipping relative to the host fluid. A spectrum of particle sizes can С can be represented. Each particle is characterized by a size, С an interphase friction coefficient, an evaporation rate & a С С temperature. С IF(NAMGRD.EQ.'PART') CALL PARTGR С C.... RADIGR provides the coding sequences required to activate С the so-called six-flux radiation model. С IF(NAMGRD.EQ.'RADI') CALL RADIGR • С C.... GAUSGR provides the Gauss-Seidel solver as an alternative to the whole-field linear equation solver provided in EARTH. С С IF(NAMGRD.EQ.'GAUS') CALL GAUSGR С C.... NOZLGR provides initial conditions & special print out for

A2-3

С a convergent-divergent nozzle case for which body-fitted С coordinates are used. С IF(NAMGRD.EQ.'NOZL') CALL NOZLGR С C.... AEROGR provides inlet boundary conditions & initial conditions С for a one-half C grid for an aerofoil. С IF (NAMGRD.EQ.'AERO') CALL AEROGR С C.... POLRGR specifies uniform flow boundary conditions into С a polar domain of 360 degree extent. С IF(NAMGRD.EQ.'POLR') CALL POLRGR С C.... BTSTGR contains the sequenses used in conjunction with the BFC test battery. С С IF(NAMGRD.EO.'BTST') CALL BTSTGR С C.... TESTGR contains test battery sequences used in conjunction С with the test-battery SATLIT subroutine, TESTST. С IF(NAMGRD.EQ.'TEST') CALL TESTGR С C.... SPECGR is a generic "special" GROUND the name of which can be used by anyone for their own purposes. С С IF(NAMGRD.EQ.'SPEC') CALL SPECGR C C.... The model ground is for the insertion of new user sequences. С IF(USEGRD) CALL GROUND С C.... The data echo is now called at the preliminary print stage. С IF(IGR.NE.20) RETURN IF(.NOT.ECHO) GO TO 20 1 Y, Y, Y, Y, Y, Y, Y, Y, Y)RETURN RETURN END SUBROUTINE GROUND #include "satear"
#include "grdloc" #include "grdear"

CXXXX	INTEGER HIGH,OLD,AUX LOGICAL STORE,SOLVE,PRINT XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
C 1 C	Set dimensions of satellite-to-GROUND data arrays to those of the satellite. COMMON/LGRND/LG(20)/IGRND/IG(20)/RGRND/RG(100)/CGRND/CG(10) LOGICAL LG CHARACTER*4 CG
С	
C	PARAMETER(NXD=25,NYD=5,NZD=10) PARAMETER(NXZ=NXD*NZD,NXYZ=3*NXD*NYD*NZD)
C 2 C	User dimensions own arrays here, for example: DIMENSION UUH(10,10),UUC(10,10),UUX(10,10),UUZ(10)
C	DIMENSION GH1(NYD,NXD),GDELH(NYD,NXD),GDELHB(NYD,NXD) DIMENSION GAX(NYD,NXD),GAY(NYD,NXD),GAZ(NYD,NXD) DIMENSION GU1(NYD,NXD),GV1(NYD,NXD),GW1(NYD,NXD),GW1L(NYD,NXD) DIMENSION GDELHT(NYD,NXD),ARRAY(NYD,NXD),GENUL(NYD,NXD), 1GH1H(NYD,NXD),GDX(NYD,NXD),GXU2D(NYD,NXD),GPX(4),GPZ(4), 2GH1L(NYD,NXD),GTMP(NYD,NXD),GTHKND(NYD,NXD),GELKND(NYD,NXD) DIMENSION AHEAT(NXD,NZD),ACUR(NXD,NZD),GDY(NYD,NXD),GXG2D(NYD, 1NXD),GYG2D(NYD,NXD),GVOL(NYD,NXD),GJX(NYD,NXD),GJY(NYD,NXD), 2GJZ(NYD,NXD),GZGNZ(NZD),GBX(NXD,NYD,NZD),GBY(NXD,NZD), 3GBZ(NXD,NYD,NZD),GC2(NYD,NXD),GC2L(NYD,NXD),GC2H(NYD,NXD), 4GNORTH(NYD,NXD),GDZWNZ(NZD) DIMENSION GDYV2D(NYD,NXD),GDXU2D(NYD,NXD)
C C 3 C	User places his data statements here, for example: DATA NXDIM,NYDIM/10,10/
C	DATA ACUR/NXZ*0./,GBX,GBY,GBZ/NXYZ*0./,AHEAT/NXZ*0./
C 4	<pre>Index functions for GROUND-EARTH variable references. LOW(I)=NPHI+I HIGH(I)=2*NPHI+I OLD(I)=3*NPHI+I IN(I)=4*NPHI+I STORE(I)=MOD(ISLN(I),2).EQ.0 SOLVE(I)=MOD(ISLN(I),3).EQ.0 PRINT(I)=MOD(IPRN(I),2).EQ.0</pre>
с 5 с 5 с с с с с	Insert own coding below as desired, guided by GREX1 examples. Note that the satellite-to-GREX1 special data in the labelled COMMONS /RSG/, /ISG/, /LSG/ and /CSG/ can be included and used below but the user must check GREX1 for any conflicting uses. The same comment applies to the EARTH-spare working arrays EASP1, EASP2,EASP10. If the call to GREX1 has been

```
deactivated then they can all be used without reservation.
С
С
     IXL=IABS(IXL)
          IF(IGR.EQ.13) GO TO 13
          IF(IGR.EQ.19) GO TO 19
     GO TO (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,
     122,23,24),IGR
С
C--- GROUP 1. Run title
С
    1 GO TO (1001,1002),ISC
 1001 CONTINUE
     CALL MAKE(DXG2D)
     CALL MAKE(DYG2D)
     CALL MAKE(XG2D)
     CALL MAKE(YG2D)
     CALL MAKE(XU2D)
     CALL MAKE(DYV2D)
     CALL MAKE(DXU2D)
     RETURN
 1002 CONTINUE
     GLATHT=RG(1)
     GSPEED=RG(2)
     GNL=RG(3)
     GGAMDT = RG(4)
     GCP=RG(5)
     GVOLTS = RG(8)
     GAMPS=RG(9)
     GEFF=RG(10)
     GHRAD=RG(11)
      GJRAD=RG(12)
      GATOT=RG(13)
      GPRMB = RG(14)
      GEPSIL=RG(15)
      GTAIR=RG(16)
      GBTAIR=RG(17)
      GENAIR=RG(18)
      GPRAIR=RG(19)
      GKAIR=RG(20)
      GGRAV=RG(21)
      GEL1=RG(22)
      GEL2=2.*RG(23)
      GTPC=RG(24)
      JNXFF = IG(1)
      JNXFL=IG(2)
      JNZ1=IG(3)
      JLOR=IG(4)
      GPI=ACOS(-1.)
```

A2-6

```
GP=.5773502692
   GPX(1) = GP
   GPX(2) = -GP
   GPX(3) = -GP
   GPX(4) = GP
   GPZ(1) = GP
   GPZ(2) = GP
   GPZ(3) = -GP
   GPZ(4) = -GP
   GEL=GEL1*GEL2/(2.*(GEL1+GEL2))
   GCONSH=GGRAV*GBTAIR*GEL**3*GPRAIR/GENAIR**2
   RETURN
С
C--- GROUP 2. Transience; time-step specification
С
  2 CONTINUE
   RETURN
С
C--- GROUP 3. X-direction grid specification
С
  3 CONTINUE
   RETURN
С
C--- GROUP 4. Y-direction grid specification
С
  4 CONTINUE
   RETURN
С
C--- GROUP 5. Z-direction grid specification
С
  5 CONTINUE
   RETURN
С
C--- GROUP 6. Body-fitted coordinates or grid distortion
С
  6 CONTINUE
   RETURN
С
C--- GROUP 7. Variables stored, solved & named
  7 CONTINUE
   RETURN
С
```

с с	(GROUE	8 .	Terms	(in d	liffere	ent	ial	equa	atio	ns)	& d(evio	es		
	8	GO 1 1,150	20 (8 2	1,82,	83,84,	,85 , 86,	,87	,88,	89,8	310,	811,	,812	,813	8,814	4,815)
C	81 1	CONT for l RETL	TINUE J1AD. JRN	: LE.GR	ND	phase	1	addi	tior	nal	velo	ocit	Y (1	/ELAI	D).	
C	82 :	CONT for U RETU	TINUE J2AD. JRN	LE.GR	ND	phase	2	addi	tior	nal	velo	ocit	y (\	/ELA	D).	
C-	83 	CON for V	TINUE	E LE.GR	ND	phase	1	addi	ition	nal	veld	ocit	у (\	/ELA	D).	
C–	84	CON for V	FINUE	C .LE.GF	ND	phase	2	addi	itio	nal	velo	ocit	у (1	JELA	D).	
C-	85	RET CON for N	JRN FINUI W1AD	E .LE.GF	ND	phase	1	addi	itio	nal	velo	ocit	у (У	VELA	D).	
C-	86	RET CON for N	JRN FINUI W2AD	E .LE.GF	ND	phase	2	add	itio	nal	velo	ocit	у ('	VELA	D).	
с	*	RET				- SECT	ION	17·		voi	UME	TRIC	SO	URCE	FOR	GALA
С	*	RET				- SECT	101	18.		CONV	JECT	ION	FLU	XES		
с	88 *	CON RET	URN	Ľ 		SECTI	ON	9 –	D	IFFU	JSIO	N CO	EFF	ICIE	NTS	
с	89 *	CON RET	TINU URN	E 		SECTI	ON	10		CON	VECT	ION	NEI	GHBC	URS	
C	810	CON RET	TINU URN 	E 		SECTI	ON	11		DIF	FUSI	ON N	IEIG	нвои	JRS	
c	811	CON RET	TINU URN	E		ፍፑርጥ፣	ON	12		LTN	EART	SED	sou	RCES	5	
C	812	CON RET	TINU URN	E		o-o-		10		000			005		ን ፓ ርሶእነጥ ር	
С	8 _. 13	CON RET	TINU URN	 E		SECTI	ON	13		COR	RECT	TON	COF		-1 CN 1 3	•
С	* 814	CON RET	TINU URN	 Е		SECTI	ON	14		USE	R'S	SOL	/ER			
С	* 815	5 CON REI	TINU URN	 Е		- SECTI	ON	15		СНА	NGE	SOLU	JTIC	N		

* Make all other group-8 changes in group 19. С C C--- GROUP 9. Properties of the medium (or media) С 9 GO TO (91,92,93,94,95,96,97,98,99,900,901,902,903),ISC 900 CONTINUE C--- for TMP1.LE.GRND----- phase-1 temperature Index AUX(TEMP1) RETURN 901 CONTINUE C--- for TMP2.LE.GRND----- phase-2 temperature Index AUX(TEMP2) RETURN 902 CONTINUE C--- for EL1.LE.GRND----- phase-1 length scale Index AUX(LEN1) RETURN 903 CONTINUE C--- for EL2.LE.GRND----- phase-2 length scale Index AUX(LEN2) RETURN **91 CONTINUE** C--- for RHO1.LE.GRND--- density for phase 1 Index AUX(DEN1). RETURN 92 CONTINUE C--- for DRH1DP.LE.GRND--- D(LN(DEN))/DP for phase 1 (D1DP). RETURN **93 CONTINUE** C--- for RHO2.LE.GRND--- density for phase 2 Index AUX(DEN2). RETURN **94 CONTINUE** C--- for DRH2DP.LE.GRND--- D(LN(DEN))/DP for phase 2 (D2DP). RETURN **95 CONTINUE** C--- for ENUT.LE.GRND--- reference turbulent kinematic viscosity. RETURN 96 CONTINUE C--- for ENUL.LE.GRND--- reference laminar kinematic viscosity. CALL GETYX(H1,GH1,NYD,NXD) DO 965 JY=1,NY DO 965 JX=1,NXIF(GH1(JY,JX)) 961,961,962 961 GENUL(JY, JX) = 1.E6GO TO 965 962 GENUL(JY, JX)=GNL 965 CONTINUE CALL SETYX(AUX(VISL), GENUL, NYD, NXD) RETURN 97 CONTINUE

C--- for PRNDTL().LE.GRND--- laminar PRANDTL nos., or diffusivity. IF(INDVAR.NE.H1) GO TO 967

CALL GETYX(AUX(TEMP1),GTMP,NYD,NXD) DO 966 JY=1,NY DO 966 JX=1,NX GTHKND(JY,JX)=GTHCND(GTMP(JY,JX)) ARRAY(JY, JX)=GTHKND(JY, JX)/GCP/RHO1 966 CONTINUE CALL SETYX(LAMPR, ARRAY, NYD, NXD) CALL SETYX(C9,GTHKND,NYD,NXD) 967 IF(INDVAR.NE.C2) GO TO 968 CALL GETYX(AUX(TEMP1),GTMP,NYD,NXD) DO 969 JY=1,NY DO 969 JX=1, NXGELKND(JY, JX) = GELCND(GTMP(JY, JX))ARRAY(JY,JX)=GELKND(JY,JX)/RHO1 969 CONTINUE CALL SETYX(LAMPR, ARRAY, NYD, NXD) CALL SETYX(C10,GELKND,NYD,NXD) 968 CONTINUE RETURN **98 CONTINUE** C--- for PHINT().LE.GRND--- interface value of first phase(FII1). RETURN **99 CONTINUE** C--- for PHINT().LE.GRND--- interface value of second phase(FII2) RETURN С C--- GROUP 10. Inter-phase-transfer processes and properties С 10 GO TO (101,102,103,104),ISC **101 CONTINUE** C--- for CFIPS.LE.GRND--- inter-phase friction coeff. AUX(INTFRC). RETURN **102 CONTINUE** C--- for CMDOT.EQ.GRND- inter-phase mass transfer Index AUX(INTMDT). RETURN **103 CONTINUE** C--- for CINT().EQ.GRND--- phase1-to-interface transfer С coefficients (COI1) RETURN **104** CONTINUE C--- for CINT().EQ.GRND--- phase2-to-interface transfer С coefficients (COI2) RETURN С C--- GROUP 11. Initialization of variable or porosity fields С **11 CONTINUE**

```
RETURN
С
C--- GROUP 12. Convection and diffusion adjustments
С
  12 CONTINUE
     RETURN
C
C--- GROUP 13. Boundary conditions and special sources
С
  13 CONTINUE
     GO TO (130,131,132,133,134,135,136,137,138,139,1310,
    11311,1312,1313,1314,1315,1316,1317,1318,1319,1320,1321),ISC
  130 CONTINUE
                   ----- coefficient = GRND
C----
     IF(NPATCH.NE.'HTLOSUPS') GO TO 1004
     IF(INDVAR.NE.H1) GO TO 1004
     CALL GETYX(AUX(TEMP1),GTMP,NYD,NXD)
     CALL GETYX(C9,GTHKND,NYD,NXD)
     DO 1005 JX=1,NX
     DO 1005 JY=1,NY
     ARRAY(JY, JX) = 0.0
 1005 CONTINUE
     DO 1006 JX=1,NX
     GDEL=GDYV2D(1,JX)
     GRAL=GCONSH*ABS(GTMP(1,JX)-GTAIR)
     GCONA=0.54
     GCONB=0.25
      IF(GRAL.GT.1.E7) GCONA=0.15
      IF(GRAL.GT.1.E7) GCONB=0.33
     GNUSLT=GCONA*GRAL**GCONB
     GHTC=GKAIR*GNUSLT/GEL
     GK1 = GTHKND(1, JX)
     ARRAY(1, JX) = GHTC*GK1/(GK1+GHTC*GDEL)
     ARRAY(1, JX) = ARRAY(1, JX)/GCP
 1006 CONTINUE
      CALL SETYX(CO, ARRAY, NYD, NXD)
 1004 IF(NPATCH.NE.'HTLOSLOS') GO TO 1008
      IF(INDVAR.NE.H1) GO TO 1008
      CALL GETYX(AUX(TEMP1),GTMP,NYD,NXD)
      CALL GETYX(C9,GTHKND,NYD,NXD)
      DO 1009 JX=1,NX
      DO 1009 JY=1,NY
      ARRAY(JY, JX) = 0.0
 1009 CONTINUE
      DO 1010 JX=1,NX
      GDEL=GDYV2D(NY,JX)
      GRAL=GCONSH*ABS(GTMP(NY,JX)-GTAIR)
```

	GCONA=0.27 GCONB=.25
	GNUSLT=GCONA*GRAL**GCONB
	GHTC = GKAIR * GNUSLT/GEL
	GRI=GIHRND(NI, JX) ARRAY(NY, JX)=GK1*GHTC/(GK1+GHTC*GDEL)
	ARRAY(NY, JX)=ARRAY(NY, JX)/GCP
1010	CONTINUE
1008	CALL SETIX(CO, ARRAI, NID, NAD)
1000	RETURN
131	CONTINUE
C	
132	CONTINUE
C	coefficient = GRND2
1 7 7	RETURN
133 C	coefficient = GRND3
0	RETURN
134	CONTINUE GRND4
C	RETURN
135	CONTINUE
C	coefficient = GRND5
136	CONTINUE
C	coefficient = GRND6
	RETURN
137	CONTINUE coefficient = GRND7
C====	RETURN
138	CONTINUE
C	
139	CONTINUE
C	coefficient = GRND9
1 - 1 /	RETURN
C) CONTINUE coefficient = GRND10
C	RETURN
131	L CONTINUE GRND
C	IF(INDVAR.NE.H1) GO TO 1351
	IF(NPATCH.NE.'SPECIAL') GO TO 1351
	CALL GETYX(C1,GDELH,NYD,NXD)
	CALL GETYX (AEAST, GAX, NID, NAD) CALL GETYX (ANORTH, GAY, NYD, NXD)
	CALL GETYX(AHIGH, GAZ, NYD, NXD)
CALL GETYX(U1,GU1,NYD,NXD) CALL GETYX(V1,GV1,NYD,NXD) CALL GETYX(W1,GW1,NYD,NXD) CALL GETYX(LOW(W1), GW1L, NYD, NXD) CALL GETYX(LOW(C1), GDELHB, NYD, NXD) CALL GETYX(HIGH(C1), GDELHT, NYD, NXD) DO 1350 JX=1,NX DO 1350 JY=1,NY GDELHW=GDELH(JY,JX-1) IF(JX.EQ.1) GDELHW=0. GDELHE=GDELH(JY,JX+1) IF(JX.EQ.NX) GDELHE=0. GDELHS=GDELH(JY-1,JX) IF(JY.EQ.1) GDELHS=0. GDELHN=GDELH(JY+1,JX) IF(JY.EQ.NY) GDELHN=0. GDELHL=GDELHB(JY,JX) IF(IZ.EQ.1) GDELHL=0. GDELHH=GDELHT(JY,JX) IF(IZ.EQ.NZ) GDELHH=0. GU1W=GU1(JY,JX-1)IF(JX.EQ.1) GU1W=0.GV1S=GV1(JY-1,JX)IF(JY.EQ.1) GV1S=0.GW1LO=GW1L(JY,JX)IF(IZ.EQ.1) GW1LO=0. UFLUX=RHO1*GU1(JY,JX)*GAX(JY,JX) HFE=AMAX1(UFLUX,0.)*GDELH(JY,JX)-AMAX1(-UFLUX,0.)*GDELHE & UFLUX=RHO1*GU1W*GAX(JY,JX) HFW=AMAX1(UFLUX,0.)*GDELHW-AMAX1(-UFLUX,0.)*GDELH(JY,JX) & VFLUX=RHO1*GV1(JY,JX)*GAY(JY,JX) HFN=AMAX1(VFLUX,0.)*GDELH(JY,JX)-AMAX1(-VFLUX,0.)*GDELHN & VFLUX=RHO1*GV1S*GAY(JY,JX) HFS=AMAX1(VFLUX,0.)*GDELHS-AMAX1(-VFLUX,0.)*GDELH(JY,JX) WFLUX=RHO1*GW1(JY,JX)*GAZ(JY,JX) HFH=AMAX1(WFLUX,0.)*GDELH(JY,JX)æ AMAX1(-WFLUX,0.)*GDELHH WFLUX=RHO1*GW1LO*GAZ(JY,JX) HFL=AMAX1(WFLUX,0.)*GDELHL-AMAX1(-WFLUX,0.)*GDELH(JY,JX) 1350 ARRAY(JY,JX)=HFW-HFE+HFS-HFN+HFL-HFH CALL SETYX(VAL, ARRAY, NYD, NXD) 1351 IF(INDVAR.NE.U1) GO TO 1356 IF(NPATCH.NE.'MRNGN') GO TO 1356

CALL GETYX(H1,GH1,NYD,NXD)

A2-13

```
DO 1355 JX=1,NX-1
     ARRAY(1, JX) = 0.0
     HE=GH1(1, JX+1)
     HP=GH1(1,JX)
     IF(HE.LT.0..AND.HP.LT.0.) GO TO 1355
     ARRAY(1, JX) = GGAMDT * (HE - HP) / (GDX(1, JX) * GCP)
1355 CONTINUE
     CALL SETYX(VAL, ARRAY, NYD, NXD)
1356 IF(INDVAR.NE.W1) GO TO 1361
     IF(NPATCH.NE.'MRNGN') GO TO 1361
     CALL GETYX(H1,GH1,NYD,NXD)
     CALL GETYX(HIGH(H1),GH1H,NYD,NXD)
     DO 1360 JX=1,NX
     ARRAY(1, JX) = 0.0
     HH=GH1H(1,JX)
     HP=GH1(1,JX)
     IF(HH.LT.0..AND.HP.LT.0.) GO TO 1360
     ARRAY(1,JX)=GGAMDT*(HH-HP)/(DZG*GCP)
1360 CONTINUE
     CALL SETYX(VAL, ARRAY, NYD, NXD)
1361 IF(INDVAR.NE.V1) GO TO 1371
     IF(NPATCH.NE.'BUOY') GO TO 1371
     CALL GETYX(H1,GH1,NYD,NXD)
     DO 1370 JX=1,NX
     DO 1370 JY=1,NY
     ARRAY(JY, JX) = 0.
     IF(GH1(JY,JX).LE.0.) GO TO 1370
     ARRAY(JY, JX) = RG(6) + RG(7) * GH1(JY, JX)
1370 CONTINUE
     CALL SETYX(VAL, ARRAY, NYD, NXD)
1371 IF(NPATCH.NE.'HEAT') GO TO 1385
     IF(INDVAR.NE.H1.AND.INDVAR.NE.C2) GO TO 1385
     IF(IZ.GT.JNZ1) GO TO 1385
     IF(ISWEEP.GT.1) GO TO 1381
     CALL GETYX (ANORTH, GNORTH, NYD, NXD)
     IF(INDVAR.EQ.H1) THEN
     GRAD=GHRAD
     ELSE
     GRAD=GJRAD
     ENDIF
     JX0 = (JNXFL - JNXFF + 1) / 3 + JNXFF - 1
     X0 = GXU2D(1, JX0)
     DO 1380 JX=JNXFF, JNXFL
     A=GXU2D(1,JX-1)
     B=GXU2D(1,JX)
      IF(ABS(((A+B)/2.)-X0).GT.3.*GRAD) GO TO 1380
     IF((ZW-DZ/2.).GT.3.*GRAD) GO TO 1380
     QSUM=0.
     DO 1375 K=1,4
```

A2-14

QX = ((A+B-2.*X0+GPX(K)*(B-A))/2.)**2QZ = ((2.*ZW - DZ + GPZ(K)*DZ)/2.)**2QT = -3.*(QX + QZ)/GRAD**21375 QSUM=QSUM+EXP(QT)/4. IF(INDVAR.EO.H1) THEN AHEAT(JX, IZ) = GPOW * QSUMGHTOT=GHTOT+GPOW*QSUM*GNORTH(1,JX) ELSE ACUR(JX,IZ)=GCUR*QSUM GJTOT=GJTOT+GCUR*QSUM*GNORTH(1,JX) ENDIF **1380 CONTINUE** 1381 IF(INDVAR.EQ.H1) THEN DO 1382 JX=JNXFF, JNXFL 1382 ARRAY(1,JX)=AHEAT(JX,IZ) ELSE DO 1383 JX=JNXFF, JNXFL 1383 ARRAY(1, JX) = ACUR(JX, IZ)ENDIF CALL SETYX(VAL, ARRAY, NYD, NXD) **1385 CONTINUE** IF(NPATCH.NE.'JZOUT') GO TO 1387 IF(INDVAR.NE.C2) GO TO 1387 DO 1386 JX=1.NX DO 1386 JY=1,NY 1386 ARRAY(JY, JX) = -GJTOT/GATOTCALL SETYX(VAL, ARRAY, NYD, NXD) **1387 CONTINUE** IF(NPATCH.NE.'LORENTZ') GO TO 1394 IF((INDVAR.NE.U1).AND.(INDVAR.NE.V1).AND.(INDVAR.NE.W1)) GO TO 13 IF(IZ.GT.JNZ1) GO TO 1394 IF(ISWEEP.LE.JLOR) GO TO 1391 CALL GETYX(C3,GJX,NYD,NXD) CALL GETYX(C4,GJY,NYD,NXD) CALL GETYX(C5,GJZ,NYD,NXD) IF(INDVAR.EQ.U1) THEN DO 1388 JX=JNXFF, JNXFL DO 1388 JY=1,NY ARRAY(JY, JX) = GJY(JY, JX) * GBZ(JX, JY, IZ) - GJZ(JY, JX) * GBY(JX, JY, IZ)**1388 CONTINUE** GO TO 1393 ELSE IF(INDVAR.EQ.V1) THEN DO 1389 JX=JNXFF, JNXFL DO 1389 JY=1,NY ARRAY(JY, JX) = GJZ(JY, JX) * GBX(JX, JY, IZ) - GJX(JY, JX) * GBZ(JX, JY, IZ)**1389 CONTINUE** GO TO 1393 ELSE IF(INDVAR.EQ.W1) THEN DO 1390 JX=JNXFF, JNXFL

	DO 1390 JY=1,NY
	ARRAY(JY, JX) = GJX(JY, JX) * GBY(JX, JY, IZ) - GJY(JY, JX) * GBX(JX, JY, IZ)
1390	CONTINUE
	GO TO 1393
	ENDIF
1391	DO 1392 JX=JNXFF, JNXFL
	DO 1392 $JY=1,NY$
1392	ARRAY(JY, JX) = 0.
1393	CALL SETYX(VAL, ARRAY, NYD, NXD)
1394	CONTINUE
	RETURN
1312	CONTINUE
C	value = GRND1
Ŭ	RETURN
1 2 1 2	CONTINUE
C	====================================
C	RETTIEN
1314	CONTINUE
C	====================================
C	
1215	
1313	CONTINUE - GRNDA
C	
1216	RETURN CONTINUE
1310	CONTINUE
C	
1 7 1 77	RETURN
131/	CONTINUE
C	Value = GRNDO
1 2 1 0	RETURN
1318	CONTINUE
C	
1 2 1 0	RETURN
1319	CONTINUE
C	Value = GRND8
	RETURN
1320	CONTINUE
C	value = GRND9
	RETURN
1321	CONTINUE
C	value = GRND10
	RETURN
C****	***************************************
С	
C	GROUP 14. Downstream pressure for PARAB=.TRUE.
С	
14	CONTINUE
	RETURN
C****	***************************************
C	

```
C--- GROUP 15. Termination of sweeps
С
  15 CONTINUE
   * Make changes for this group only in group 19.
С
    RETURN
С
C--- GROUP 16. Termination of iterations
С
  16 CONTINUE
С
   * Make changes for this group only in group 19.
    RETURN
С
C--- GROUP 17. Under-relaxation devices
С
  17 CONTINUE
   * Make changes for this group only in group 19.
С
    RETURN
С
C--- GROUP 18. Limits on variables or increments to them
C
  18 CONTINUE
   * Make changes for this group only in group 19.
С
     RETURN
C
C--- GROUP 19. Special calls to GROUND from EARTH
С
  19 GO TO (191,192,193,194,195,196,197,198),ISC
 191 CONTINUE
   * ---- SECTION 1 ---- START OF TIME STEP.
С
     GJTOT=0.
     GHTOT=0.
     GPOW=3.*GEFF*GVOLTS*GAMPS/(GPI*GHRAD**2)
     GCUR=3.*GAMPS/(GPI*GJRAD**2)
     RETURN
 192 CONTINUE
С
   * ----- SECTION 2 ---- START OF SWEEP.
     RETURN
 193 CONTINUE
С
   * ----- SECTION 3 ---- START OF IZ SLAB.
     IF(ISWEEP.NE.1) GO TO 199
     IF(IZSTEP.NE.1) GO TO 199
     CALL GETYX(DXG2D,GDX,NYD,NXD)
     CALL GETYX(DYG2D,GDY,NYD,NXD)
     CALL GETYX(XG2D,GXG2D,NYD,NXD)
     CALL GETYX(YG2D,GYG2D,NYD,NXD)
```

CALL GETZ(ZGNZ,GZGNZ,NZD) CALL GETZ(DZWNZ,GDZWNZ,NZD) CALL GETYX(XU2D,GXU2D,NYD,NXD) CALL GETYX(DYV2D,GDYV2D,NYD,NXD) CALL GETYX(DXU2D,GDXU2D,NYD,NXD) **199 CONTINUE** CALL GETYX(VOL, GVOL, NYD, NXD) RETURN **194 CONTINUE** * ----- SECTION 4 ---- START OF ITERATION. С RETURN **195 CONTINUE** ----- SECTION 5 ---- FINISH OF ITERATION. С * _____ RETURN **196 CONTINUE** С * ----- FINISH OF IZ SLAB. CALL GETYX(H1,GH1,NYD,NXD) CALL GETYX(C1,GDELH,NYD,NXD) DO 1930 JX=1,NX DO 1930 JY=1,NY GDELH(JY, JX) = GDELH(JY, JX) + GH1(JY, JX)1 -GEPSIL*(2.*GDELH(JY,JX)-GLATHT)/GLATHT IF(GDELH(JY,JX).LT.0.0) GDELH(JY,JX)=0.0IF(GDELH(JY,JX).GT.GLATHT) GDELH(JY,JX)=GLATHT **1930 CONTINUE** CALL SETYX(C1,GDELH,NYD,NXD) CALL GETYX(C2,GC2,NYD,NXD) CALL GETYX(C10,GH1,NYD,NXD) IF(IZ.NE.1) THEN CALL GETYX(LOW(C2),GC2L,NYD,NXD) CALL GETYX(LOW(C10), GH1L, NYD, NXD) ENDIF IF(IZ.NE.NZ) THEN CALL GETYX(HIGH(C2),GC2H,NYD,NXD) CALL GETYX(HIGH(C10), GH1H, NYD, NXD) ENDIF DO 1931 JX=1,NX DO 1931 JY=1,NY GJX1=0.0GJX2=0.0 IF(JX.NE.NX) THEN GDEL1=GDXU2D(JY,JX) GCND1=GH1(JY,JX) GDEL2=GDXU2D(JY,JX+1) GCND2=GH1(JY,JX+1)GECOND=(GDEL1+GDEL2)*GCND1*GCND2/(GCND1*GDEL2+GCND2*GDEL1) GJX2 = -GECOND * (GC2(JY, JX+1) - GC2(JY, JX))/GDX(JY, JX)ENDIF IF(JX.NE.1) THEN

15

```
GDEL1 = GDXU2D(JY, JX-1)
    GCND1=GH1(JY,JX-1)
    GDEL2=GDXU2D(JY,JX)
    GCND2=GH1(JY,JX)
     GECOND=(GDEL1+GDEL2)*GCND1*GCND2/(GCND1*GDEL2+GCND2*GDEL1)
    GJX1 = -GECOND * (GC2(JY, JX) - GC2(JY, JX-1))/GDX(JY, JX-1)
     ENDIF
    GJX(JY,JX) = (GJX2+GJX1)/2.
    GJY1 = 0.0
     GJY2 = 0.0
     IF(JY.NE.NY) THEN
     GDEL1=GDYV2D(JY,JX)
     GCND1=GH1(JY,JX)
     GDEL2=GDYV2D(JY+1,JX)
     GCND2=GH1(JY+1,JX)
     GECOND=(GDEL1+GDEL2)*GCND1*GCND2/(GCND1*GDEL2+GCND2*GDEL1)
     GJY2 = -GECOND * (GC2(JY+1, JX) - GC2(JY, JX))/GDY(JY, JX)
     ENDIF
     IF(JY.NE.1) THEN
     GDEL1=GDYV2D(JY-1,JX)
     GCND1=GH1(JY-1,JX)
     GDEL2=GDYV2D(JY,JX)
     GCND2=GH1(JY,JX)
     GECOND=(GDEL1+GDEL2)*GCND1*GCND2/(GCND1*GDEL2+GCND2*GDEL1)
     GJY1 = -GECOND * (GC2(JY, JX) - GC2(JY-1, JX)) / GDY(JY-1, JX)
     ENDIF
     IF(JY.EQ.1) GJY1=ACUR(JX, IZ)
     GJY(JY,JX) = (GJY2+GJY1)/2.
     GJZ1=0.0
     GJZ2=0.0
     IF(IZ.NE.NZ) THEN
     GDEL1=GDZWNZ(IZ)
     GCND1=GH1(JY,JX)
     GDEL2=GDZWNZ(IZ+1)
     GCND2=GH1H(JY,JX)
     GECOND=(GDEL1+GDEL2)*GCND1*GCND2/(GCND1*GDEL2+GCND2*GDEL1)
     GJZ2 = -GECOND * (GC2H(JY, JX) - GC2(JY, JX))/DZG
     ENDIF
     IF(IZ.EQ.NZ) GJZ2=-GJTOT/GATOT
     IF(IZ.NE.1) THEN
     GDEL1=GDZWNZ(IZ-1)
     GCND1=GH1L(JY,JX)
     GDEL2=GDZWNZ(IZ)
     GCND2=GH1(JY,JX)
     GECOND=(GDEL1+GDEL2)*GCND1*GCND2/(GCND1*GDEL2+GCND2*GDEL1)
     GJZ1=-GECOND*(GC2(JY,JX)-GC2L(JY,JX))/DZGL
     ENDIF
     GJZ(JY,JX) = (GJZ2+GJZ1)/2.
1931 CONTINUE
```

```
A2-19
```

```
CALL SETYX(C3,GJX,NYD,NXD)
     CALL SETYX(C4,GJY,NYD,NXD)
     CALL SETYX(C5,GJZ,NYD,NXD)
     IF(ISWEEP.NE.JLOR) GO TO 1934
     DO 1933 KZ=1,NZ
     DO 1933 KY=1,NY
     DO 1933 KX=1,NX
     X1 = GXG2D(KY, KX)
     Y1 = GYG2D(KY, KX)
     Z1 = GZGNZ(KZ)
     Z2 = GZGNZ(IZ)
     DO 1932 JX=1,NX
     DO 1932 JY=1,NY
     X2 = GXG2D(JY, JX)
     Y2 = GYG2D(JY, JX)
     R=((X1-X2)**2+(Y1-Y2)**2+(Z1-Z2)**2)**.5
     ROP = ((X1 - X2) * *2 + (Y1 - Y2) * *2 + (Z1 + Z2) * *2) * *.5
     IF(R.EQ.0.) GO TO 1937
     GBX(KX,KY,KZ) = GBX(KX,KY,KZ) + (GJY(JY,JX) * (Z1-Z2) - GJZ(JY,JX) *
    1(Y1-Y2) + GVOL(JY, JX) / R**3
     GBY(KX,KY,KZ) = GBY(KX,KY,KZ) + (GJZ(JY,JX) * (X1-X2) - GJX(JY,JX) *
    1(21-22) * GVOL(JY, JX)/R**3
     GBZ(KX,KY,KZ)=GBZ(KX,KY,KZ)+(GJX(JY,JX)*(Y1-Y2)-GJY(JY,JX)*
    1(X1-X2) + GVOL(JY, JX)/R**3
1937 CONTINUE
     GBX(KX,KY,KZ)=GBX(KX,KY,KZ)+(GJY(JY,JX)*(Z1+Z2)+GJZ(JY,JX)*
    1(Y1-Y2))*GVOL(JY,JX)/ROP**3
     GBY(KX, KY, KZ) = GBY(KX, KY, KZ) + (-GJZ(JY, JX) * (X1-X2) - GJX(JY, JX) *
    1(Z1+Z2))*GVOL(JY,JX)/ROP**3
     GBZ(KX,KY,KZ)=GBZ(KX,KY,KZ)+(GJX(JY,JX)*(Y1-Y2)-GJY(JY,JX)*
    1(X1-X2) + GVOL(JY, JX) / ROP**3
1932 CONTINUE
1933 CONTINUE
1934 IF(ISWEEP.NE.JLOR+1) GO TO 1935
     DO 1936 JX=1,NX
     DO 1936 JY=1,NY
     GJX(JY, JX) = GBX(JX, JY, IZ)
     GJY(JY, JX) = GBY(JX, JY, IZ)
     GJZ(JY, JX) = GBZ(JX, JY, IZ)
1936 CONTINUE
     CALL SETYX(C6,GJX,NYD,NXD)
     CALL SETYX(C7,GJY,NYD,NXD)
     CALL SETYX(C8,GJZ,NYD,NXD)
1935 CONTINUE
     RETURN
 197 CONTINUE
                          - SECTION 7 ---- FINISH OF SWEEP.
     IF(ISWEEP.NE.JLOR) RETURN
     FACT=GPRMB/(4.*GPI)
```

A2-20

С

DO 1971 KZ=1,NZ DO 1971 KY=1,NY DO 1971 KX=1,NX GBX(KX,KY,KZ) = GBX(KX,KY,KZ) * FACTGBY(KX, KY, KZ) = GBY(KX, KY, KZ) * FACTGBZ(KX,KY,KZ) = GBZ(KX,KY,KZ) * FACT**1971 CONTINUE** RETURN **198 CONTINUE** ----- SECTION 8 ---- FINISH OF TIME STEP. C * RETURN С C--- GROUP 20. Preliminary print-out С **20 CONTINUE** RETURN С C--- GROUP 21. Print-out of variables С **21 CONTINUE** * Make changes for this group only in group 19. С RETURN С C--- GROUP 22. Spot-value print-out 22 CONTINUE * Make changes for this group only in group 19. С RETURN C C--- GROUP 23. Field print-out and plot control 23 CONTINUE RETURN C C--- GROUP 24. Dumps for restarts С 24 CONTINUE RETURN END FUNCTION GTHCND(GTEMP) PARAMETER(N=9) DIMENSION T(N), C(N) DATA T/27.,127.,227.,327.,427.,660.,665.,1027.,1227./ DATA C/1.70,1.75,1.85,1.80,1.75,1.70,0.93,1.00,1.10/ IF(GTEMP.LE.T(1)) GTHCND=C(1)IF(GTEMP.LE.T(1)) RETURN

A2 - 21

```
IF(GTEMP.GE.T(N)) GTHCND=C(N)
   IF(GTEMP.GE.T(N)) RETURN
  DO 10 I=2, N
   IM = I - 1
   IF(GTEMP.GE.T(IM).AND.GTEMP.LE.T(I))
 1GTHCND=C(IM)+(GTEMP-T(IM))*(C(I)-C(IM))/(T(I)-T(IM))
10 CONTINUE
   RETURN
   END
   FUNCTION GELCND(GTEMP)
   PARAMETER(N=9)
   DIMENSION T(N), C(N)
   DATA T/27.,327.,527.,627.,660.,665.,800.,1000.,1200./
   DATA C/1.89E5,1.37E5,1.18E5,1.00E5,9.00E4,4.17E4,3.77E4,3.45E4,
  13.13E4/
   IF(GTEMP.LE.T(1)) GELCND=C(1)
   IF(GTEMP.LE.T(1)) RETURN
   IF(GTEMP.GE.T(N)) GELCND=C(N)
   IF(GTEMP.GE.T(N)) RETURN
   DO 10 I=2, N
   IM = I - 1
   IF(GTEMP.GE.T(IM).AND.GTEMP.LE.T(I))
  1GELCND=C(IM)+(GTEMP-T(IM))*(C(I)-C(IM))/(T(I)-T(IM)))
10 CONTINUE
   RETURN
   END
```

A2-22

APPENDIX 3

Listing of the OUTPUT File

35

ORIGINAL PAGE IS OF POOR QUALITY GROUND STATION IS GROUND.FTN 11 JULY 86

CCCC HHH PHOENICS VERSION 1.3, 03 SEPT 1986 CCCCCCCC HHHHHH (C) COPYRIGHT 1984 ССССССС ННННННННН CONCENTRATION HEAT AND MOMENTUM LTD CCCCCCC HHHHHHHHHHHH ALL RIGHTS RESERVED. CCCCCCC HHHHHHHHHHHHH CHAM LTD, BAKERY HOUSE, 40 HIGH ST CCCCCCC HHHHHHHHHHH WIMBLEDON, LONDON, SW19 5AU ССССССС ННННННННН TEL: 01-947-7651; TELEX: 928517 FACSIMILE: 01-879-3497 СССССССС ННННН THE OPTION LEVEL IS -18 СССС ННН THIS CODE MAY ONLY BE USED UNDER THE TERMS AND CONDITIONS OF A LICENCE AGREEMENT WITH CHAM LTD. **REPLICATION OF THIS CODE IS PROHIBITED UNLESS** SPECIFICALLY AUTHORISED IN WRITING BY CHAM LTD. GREX1 OF 15/07/86 HAS BEEN CALLED FORMATTED SATLIT DATA READ FROM DF10 FOR IRUN= 1 ***---- STORAGE INFORMATION -----*** F DIMNSN=200000 OCCUPIED= 29622 ESTIMATED MINIMUM DIMNSN= 14747 DEP VRBL= 21250 OLD VRBL= 0 3D COEFF= 0 3D DVDPS= 0 GROUP 1. RUN TITLE & NUMBER ***** TEXT(NASA ARC WELDING SIMULATION) 1 IRUNN = *** GRID-GEOMETRY INFORMATION *** X-COORDINATES OF THE CELL CENTRES 8.700E+00 8.900E+00 8.100E+00 8.300E+00 8.500E+00 9.300E+00 9.500E+00 9.700E+00 9.900E+00 9.100E+00 1.030E+01 1.070E+01 1.050E+01 1.090E+011.010E+01 Y-COORDINATES OF THE CELL CENTRES

1.00	00E-01	3.00)0E-01	5.00	0E-01	7.00	0E-01	9.00	0E-01
Z-COORI 1.00	DINATES 00E-01	OF TH 3.00	HE CELL	CENTR	ES 0E-01	7,00	0E-01	9 00	0E-01
								5.00	02 01
IN	TEGRATI	ON OF	EQUATIO	NS BE	GINS				
******	******	*****	*******	*****	******	*****	******	* * * * *	****
TIME S	rP=	1 SWE	SEP NO=	400	ZSLAB	NO=	1 IT	ERN N	0= 1
								_	
FIELD V	IELD AT	OF P1)= 1, 1	.2= 1	, ISWEE	P = 400	U, ISTE	P=	1
IY = 5	-3.22	7E+02	-4.799	E+02	-6.692	E+02	-7.480	E+02	-3.838E+02
IY = 4	-3.21	6E+02	-4.673	E+02	-5.954	E+02	-4.156	E+02	8.961E+02
IY = 3	-3.26	6E+02	-4.492	E+02	-4.648	E+02	1.855	E+02	3.402E+03
IY = 2	-3.45	4E+02	-4.802	E+02	-5.315	E+02	-7.908	E+00	2.839E+03
IY = I	-3.56	6E+02	-5.348	SE+02	-7.821	E+02	-1.150	E+03	1.574E+03
IY = 5	8.18	6E+02	2,037	E+03	1.949	E+03	1,809	E+03	2.917E+02
IY = 4	4.81	0E+03	2.294	E+03	1.784	E+03	1,602	E+03	1.440E+03
IY = 3	3.23	7E+03	9.587	E+02	9.050	E+02	1.174	E+03	1.202E+03
IY= 2	3.74	2E+03	-2.564	E-02	1.148	E+01	6.385	E+02	8.383E+02
IY = 1	4.24	0E+03	-1.348	E+03	-6.057	E+02	3.156	E+02	6.118E+02
IX=	11		12		13		14		15
IY= 5	-3.08	7E+02	-3.684	E+02	-2.680	E+02	-1.605	E+02	-9.050E+01
IY = 4	1.46	1E+01	-2.619)E+02	-2.293	E+02	-1.454	E+02	-8.340E+01
1Y = 3	0.05	2E+01	-2.289	E+02	-2.234	E+02	-1.507	E+02	-9.133E+01
II = 2 IV = 1	1.22	35+UI 95+02	-2.15/		-2.248	E+02	-1.583	5402 5402	
TX =	16	06402	17	15+UZ	-1.0/1	6402	-1.434	6402	20
FIELD V	VALUES (OF U1	± /		10		19		20
IY = 5	3.38	4E - 01	3.381	E-01	3.377	E-01	3.371	E-01	3.366E-01
IY = 4	3.38	4E-01	3.380	E-01	3.374	E-01	3.361	E-01	3.339E-01
IY= 3	3.38	3E-01	3.378	BE-01	3.367	E-01	3.340	E-01	7.180E+00
IY= 2	3.38	2E-01	3.377	'E-01	3.366	E-01	3.344	E-01	9.500E+00
IY = 1	3.38	2E-01	3.376	E-01	3.366	E-01	3.347	E-01	1.053E+01
IX=	6		7		8		9		10
IY = 5	3.37	3E-01	4.672	E+00	3.665	E+00	3.434	E-01	3.427E-01
IX= 4 TV- 2	2.12	15+01 75+01	1.910	ノビナU1	9.333	E+00	4.090	E+00	3.441E-01
II= 3 TV= 7	_1 97	7E+01	-4 /31	ET00	2.00/2	5E+00	5.3/2	5+00 5+00	3.440E-01 3 <i>44</i> 0E-01
IY = 1	-3.27	2E+01	-3.403	E = 0.0	-1.463	E+01	-4.884	E+00	3.442E-01
IX=	11		12		13		14	2.00	15
IY= 5	3.41	8E-01	3.413	8E-01	3.410	E-01	3.409	E-01	3.408E-01
IY= 4	3.42	1E-01	3.414	E-01	3.410	E-01	3.409	E-01	3.408E-01

IY=	3	3.422E-01	3.414E-01	3.411E-01	3.409E-01	3.408E-01
IY=	2	3.423E-01	3.415E-01	3.411E-01	3.409E-01	3.408E-01
IY=	1	3.423E-01	3.415E-01	3.411E-01	3.409E-01	3.408E-01
IX=		16	17	18	19	20
FIEL	DV	ALUES OF V1				
IY=	4	1.874E-04	2.915E-04	5.160E-04	1.018E-03	2.265E-03
IY=	3	2.692E-04	4.145E-04	7.226E-04	1.431E-03	3.752E-03
IY=	2	2.624E-04	3.845E-04	5.768E-04	7.282E-04	6.858E+00
IY=	1	1.783E-04	2.554E-04	3.648E-04	4.093E-04	2.167E+01
IX=		6	7	8	9	10
IY=	4	5.193E-03	4.341E+00	-9.998E-01	-3.315E+00	2.313E-03
IY=	3	2.689E+01	3.852E+00	-7.094E+00	-7.459E+00	-3.738E+00
IY=	2	5.157E+01	1.259E+01	-1.493E+01	-1.215E+01	-6.759E+00
IY=	1	5.415E+01	1.508E+01	-1.377E+01	-9.352E+00	-5.234E+00
IX=		11	12	13	14	15
IY=	4	6.342E-04	2.344E-04	1.063E-04	5.798E-05	3.862E-05
IY=	3	2.927E-04	1.996E-04	1.210E-04	7.578E-05	5.346E-05
IY=	2	1.906E-04	1.493E-04	1.028E-04	6.979E-05	5.128E-05
IY=	1	1.629E-04	1.016E-04	6.803E-05	4.690E-05	3.497E-05
IX=		16	17	18	19	20
FIEL	DV	VALUES OF W1				
IY=	5	3.940E-04	5.676E-04	9.232E-04	1.604E-03	2.805E-03
IY=	4	3.162E-04	4.751E-04	8.475E-04	1.703E-03	3.699E-03
IY=	3	2.974E-04	4.729E-04	9.163E-04	2.024E-03	8.232E-03
IY=	2	2.742E-04	4.478E-04	8.721E-04	1.838E-03	5.641E+00
IY=	1	1.952E-04	3.381E-04	6.968E-04	1.484E-03	-3.186E+01
IX=		6	7	8	9	10
IY=	5	4.444E-03	6.214E-03	7.409E-03	7.309E-03	3.006E-03
IY=	4	1.038E-02	7.613E+00	3.675E+00	1.099E+00	6.195E-03
IY=	3	1.508E+01	6.739E+00	2.075E+00	8.047E-01	6.185E-03
IY=	2	1.405E+01	5.179E+00	3.197E-01	3.905E-01	6.266E-03
IY=	1	-1.090E+01	-1.377E+01	-5.633E+00	-3.933E-01	6.776E-03
IX=		11	12	13	14	15
I Y=	5	1.511E-03	7.460E-04	3.787E-04	2.098E-04	1.395E-04
IY=	4	1.603E-03	7.316E-04	3.491E-04	1.843E-04	1.192E-04
IY=	3	1.625E-03	7.474E-04	3.491E-04	1.776E-04	1.112E-04
IY=	2	1.652E-03	7.621E-04	3.504E-04	1.727E-04	1.046E-04
IY=	1	1.684E-03	7.503E-04	3.304E-04	1.537E-04	8.821E-05
IX=		16	17	18	19	20
FIEL	D	ALUES OF ENUI				
IY=	5	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	4	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	3	1.000E+06	1.000E+06	1.000E+06	1.000E+06	3.570E-03
IY=	2	1.000E+06	1.000E+06	1.000E+06	1.000E+06	3.570E-03
IY=	1	1.000E+06	1.000E+06	1.000E+06	1.000E+06	3.570E-03
IX=	_	6	7	8	9	10
IY=	5	1.000E+06	3.570E-03	3.570E-03	3.570E-03	1.000E+06
IY=	4	3.570E-03	3.570E-03	3.570E-03	3.570E-03	3.570E-03
IY=	3	3.570E-03	3.570E-03	3.570E-03	3.570E-03	3.570E-03

IY=	2	3.570E-03	3.570E-03	3.570E-03	3.570E-03	3.570E-03
IY=	1	3.570E-03	3.570E-03	3.570E-03	3.570E-03	3.570E-03
IX=		11	12	13	14	15
IY=	5	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	4	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	3	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	2	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	1	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IX=		16	17	18	19	20
FIELD	o v	ALUES OF H1				
IY=	5	-2.765E+02	-2.386E+02	-1.930E+02	-1.392E+02	-7.964E+01
IY=	4	-2.749E+02	-2.356E+02	-1.866E+02	-1.254E+02	-4.945E+01
IY=	3	-2.722E+02	-2.307E+02	-1.763E+02	-1.016E+02	1.308E+01
IY=	2	-2.697E+02	-2.262E+02	-1.673E+02	-8.411E+01	3.884E+01
IY=	1	-2.681E+02	-2.235E+02	-1.620E+02	-7.309E+01	4.423E+01
IX=		6	7	8	9	10
IY=	5	-2.338E+01	2.021E+01	1.805E+01	1.303E+01	-1.736E+00
IY=	4	3.538E+01	3.523E+01	3.363E+01	2.701E+01	1.605E+01
IY=	3	4.157E+01	3.505E+01	3.431E+01	3.018E+01	1.825E+01
IY=	2	4.558E+01	2.648E+01	3.241E+01	2.778E+01	1.474E+01
IY=	1	4.775E+01	2.474E+01	2.537E+01	2.105E+01	1.012E+01
IX=		11	12	13	14	15
IY=	5	-2.256E+01	-4.522E+01	-6.950E+01	-9.011E+01	-1.055E+02
IY=	4	-1.576E+01	-4.221E+01	-6.793E+01	-8.941E+01	-1.051E+02
IY=	3	-1.296E+01	-4.006E+01	-6.639E+01	-8.857E+01	-1.046E+02
IY=	2	-1.332E+01	-3.942E+01	-6.556E+01	-8.799E+01	-1.041E+02
IY=	1	-1.472E+01	-3.961E+01	-6.536E+01	-8.776E+01	-1.039E+02
IX=		16	17	18	19	20
FIELI	D V	ALUES OF TMP	1			
IY=	5	3.234E+02	3.611E+02	4.065E+02	4.600E+02	5.193E+02
IY=	4	3.250E+02	3.641E+02	4.128E+02	4.738E+02	5.493E+02
IY=	3	3.276E+02	3.689E+02	4.230E+02	4.974E+02	6.115E+02
IY=	2	3.302E+02	3.735E+02	4.320E+02	5.148E+02	6.372E+02
IY=	1	3.317E+02	3.761E+02	4.373E+02	5.258E+02	6.425E+02
IX=		6	7	8	9	10
IY=	5	5.752E+02	6.186E+02	6.165E+02	6.115E+02	5.968E+02
IY=	4	6.337E+02	6.336E+02	6.320E+02	6.254E+02	6.145E+02
IY=	3	6.399E+02	6.334E+02	6.326E+02	6.285E+02	6.167E+02
IY=	2	6.439E+02	6.248E+02	6.307E+02	6.261E+02	6.132E+02
IY=	1	6.460E+02	6.231E+02	6.237E+02	6.194E+02	6.086E+02
IX=		11	12	13	14	15
IY=	5	5.761E+02	5.535E+02	5.293E+02	5.088E+02	4.935E+02
IY=	4	5.828E+02	5.565E+02	5.309E+02	5.095E+02	4.939E+02
IY=	3	5.856E+02	5.586E+02	5.324E+02	5.104E+02	4.945E+02
IY=	2	5.852E+02	5.593E+02	5.333E+02	5.109E+02	4.949E+02
IY=	1	5.839E+02	5.591E+02	5.335E+02	5.112E+02	4.951E+02
IX=		16	17	18	19	20
FIEL	DV	ALUES OF DEI	Н			
IY=	5	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00

IY=	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	7.715E+00
IY=	3	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.430E+02
IY=	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	3.370E+02
IY=	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	3.555E+02
IX=		6	7	8	9	10
IY=	5	1.076E+02	2.738E+02	2.657E+02	2.466E+02	1.905E+02
IY=	4	3.300E+02	3.295E+02	3.243E+02	2.997E+02	2.575E+02
IY=	3	3.514E+02	3.291E+02	3.275E+02	3.126E+02	2.667E+02
IY=	2	3.663E+02	2.990E+02	3.218E+02	3.039E+02	2.532E+02
IY=	1	3.742E+02	2.939E+02	2.957E+02	2.779E+02	2.355E+02
IX=		11	12	13	14	15
IY=	5	1.116E+02	2.591E+01	0.000E+00	0.000E+00	0.000E+00
IY=	4	1.374E+02	3.733E+01	0.000E+00	0.000E+00	0.000E+00
IY=	3	1.483E+02	4.561E+01	0.000E+00	0.000E+00	0.000E+00
IY=	2	1.469E+02	4.805E+01	0.000E+00	0.000E+00	0.000E+00
IY=	1	1.415E+02	4.732E+01	0.000E+00	0.000E+00	0.000E+00
IX=		16	17	18	19	20
FIELD) VA	LUES OF EPOT	с. С			
IY=	5	2.028E-04	2.322E-04	2.595E-04	2.789E-04	2.821E-04
TY=	4	2.111E-04	2.452E-04	2.807E-04	3.109E-04	3.212E-04
TY=	3	2.261E-04	2.701E-04	3.252E-04	3.872E-04	4.309E-04
TY=	2	2.437E-04	3.024E-04	3.929E-04	5.335E-04	7.226E-04
TY =	1	2.567E-04	3.293E-04	4.640E-04	7.568E-04	1.561E-03
T X =	-	6	7	8	9	10
TY = 1	5	2.621E-04	2.249E-04	1.901E-04	1.590E-04	1.308E-04
TY=	4	2.914E-04	2.282E-04	1.913E-04	1.608E-04	1.324E-04
TY=	3	3.738E-04	2.061E-04	1.874E-04	1.641E-04	1.359E-04
TY=	2	6.105E-04	3.630E-09	1.767E-04	1.730E-04	1.423E-04
	1	1 513E-03	5.627E-04	3.056E-04	2.065E-04	1.524E-04
TX=	-	11	12	13	14	15
TV=	5	1052E-04	8.254E-05	6.251E-05	4.484E-05	2.914E-05
	Δ	1.063E-04	8 320E-05	6290E-05	4.507E-05	2.930E-05
	z	1.005504	8 452E-05	6.363E-05	4.548E-05	2.956E-05
	2	1.0000-04 1.120F-04	8 623E-05	6.449E-05	4594E - 05	2.985E-05
	1	$1.156F_0/$	8 764E-05	6511E-05	4.625E-05	3.003E-05
TV-	-	16	17	18	19	20
ETETT	۰. ۱	TUES OF TV	T 1	10	1.7	20
	י י ר ק	_2 067F+01	_1 896F±01	-1 517F \pm 01	-7 144E+00	4.771E+00
11- TV-	1	-2.0076+01	-2.318F+01		-1 254E+01	4.8265+00
11	2	-2.2926+01 -2.7449+01	-2.3100+01 -3.2810+01	-2.1100+01 -3.718F+01	-3 129F±01	2 074E+00
	2	2 276 5.01	-3.2016+01	-7 733E+01	_9.370F+01	_2 389F+01
$II = IV_{-}$	1		-4.904E+01	-7.2330+01	-3.032E+02	-2.3095+01 -2 021F+02
II = IV	T	-3.9506+01	-0./906+01	-1.5296+02	-3.0326+02	-2.0216+02
	E		1 9655.01	0 1 600E+01	ייייייייייייייייייייייייייייייייייייי	1 420 8+01
II = TV	С И		1.00JE+U1	1.00000+01	1.3306+01	1 4045+01
II = IV	4	2.3335+V1 5 /07m.01	4 5005+VL	1 0205-01	1 2055101	1 /020101
$\mathbf{I}\mathbf{I} =$	ວ າ	3.40/5+U1 1 750m.00	4.5205+V1 1 0505+01	1.0295+01 1.2175.01	L.2036+V1	1 570F+01
	۲ 1	1./305+UZ	1.0306+02 2 070±102	-4.31/5+V1 Q 0625:01	2 0025+00 2 0025+01	1.5/UETUI
11= TV-	Ŧ	2.4415+V2 11	2.5/VG+VZ 12	0.9045+VI 12	1/	2.3336701
1 Δ -		T T	T C			

IY=	5	1.315E+01	1.208E+01	1.102E+01	9.970E+00	9.178E+00
IY=	4	1.321E+01	1.220E+01	1.111E+01	1.003E+01	9.206E+00
IY=	3	1.373E+01	1.260E+01	1.135E+01	1.015E+01	9.257E+00
IY=	2	1.501E+01	1.330E+01	1.170E+01	1.032E+01	9.318E+00
IY=	1	1.737E+01	1.412E+01	1.202E+01	1.045E+01	9.362E+00
IX=		16	17	18	19	20
FIEL	D VA	ALUES OF JY				
IY =	5	2.852E+00	4.345E+00	6.842E+00	9.879E+00	1.134E+01
TY=	4	7.998E+00	1.264E+01	2.112E+01	3.309E+01	4.091E+01
TY=	3	1.118E+01	1.900E+01	3.580E+01	6.687E+01	1.024E+02
TY=	2	1.046E+01	1.962E+01	4.404E+01	1.100E+02	2.760E+02
TV=	1	4 423E+00	8.917E+00	2.253E+01	7.392E+01	8.355E+02
	-	6	7	8	9	10
TV =	5	7 5825+00	8 304 - 01	2 860 -01	4 473E-01	$\hat{4}$ 110E-01
TV	Δ	2 753F±01	-4 654E+00	-6.783F-01	1 2708+00	1 3038+00
TV	2	2.755E+01	-4.034E+00	-0.703E-01	2 022E+00	2 5218+00
TV_	2	7.052E+01 2 710F+02	- J.0048+01	-3.0205+00 2 0/7F±01	1 061E+00	7 332+00
$II = TV_{-}$	2 1	2./IUE+UZ	J. 02/6+01	2.94/6401	1.0045+01 0 /27E+00	4.2336+00
$II = TV_{-}$	T	0.400E+U2	1.4906+02	3.2136+01 12	0.42/5+00	2.3946+00 1c
	r					
T X =	5	2.884E-01	1.8/25-01	1.144E-01	0.951E-UZ	4./326-02
1Y =	4	9.088E-01	5.581E-01	3.263E-UI	1.920E-01	1.2/9E-01
1Y=	3	1.539E+00	8.502E-01	4.620E-01	2.5846-01	1.6656-01
IY =	2	1.8/1E+00	8./58E-01	4.330E-01	2.284E-01	1.420E-01
IY=	1	9.525E-01	3.965E-01	1.828E-01	9.251E-02	5.615E-02
IX=		16	17	18	19	20
IX= FIEL	D_V <i>i</i>	16 ALUES OF JZ	17	18	19	20
IX= FIEL IY=	D V <i>I</i> 5	16 ALUES OF JZ 2.733E+00	17 3.323E+00	18 4.046E+00	19 4.693E+00	20 4.710E+00
IX= FIEL: IY= IY=	D V2 5 4	16 ALUES OF JZ 2.733E+00 3.118E+00	17 3.323E+00 4.010E+00	18 4.046E+00 5.340E+00	19 4.693E+00 6.876E+00	20 4.710E+00 7.414E+00
IX= FIEL: IY= IY= IY=	D V2 5 4 3	16 ALUES OF JZ 2.733E+00 3.118E+00 3.878E+00	17 3.323E+00 4.010E+00 5.500E+00	18 4.046E+00 5.340E+00 8.555E+00	19 4.693E+00 6.876E+00 1.335E+01	20 4.710E+00 7.414E+00 1.708E+01
IX= FIEL IY= IY= IY= IY=	D V2 5 4 3 2	16 ALUES OF JZ 2.733E+00 3.118E+00 3.878E+00 4.889E+00	17 3.323E+00 4.010E+00 5.500E+00 7.804E+00	18 4.046E+00 5.340E+00 8.555E+00 1.474E+01	19 4.693E+00 6.876E+00 1.335E+01 3.003E+01	20 4.710E+00 7.414E+00 1.708E+01 5.266E+01
IX= FIEL IY= IY= IY= IY= IY=	D V2 5 4 3 2 1	16 ALUES OF JZ 2.733E+00 3.118E+00 3.878E+00 4.889E+00 5.740E+00	17 3.323E+00 4.010E+00 5.500E+00 7.804E+00 1.018E+01	18 4.046E+00 5.340E+00 8.555E+00 1.474E+01 2.334E+01	19 4.693E+00 6.876E+00 1.335E+01 3.003E+01 6.569E+01	20 4.710E+00 7.414E+00 1.708E+01 5.266E+01 2.038E+02
IX= FIEL: IY= IY= IY= IY= IY= IX=	D V2 5 4 3 2 1	16 ALUES OF JZ 2.733E+00 3.118E+00 3.878E+00 4.889E+00 5.740E+00 6	17 3.323E+00 4.010E+00 5.500E+00 7.804E+00 1.018E+01 7	18 4.046E+00 5.340E+00 8.555E+00 1.474E+01 2.334E+01 8	19 4.693E+00 6.876E+00 1.335E+01 3.003E+01 6.569E+01 9	4.710E+00 7.414E+00 1.708E+01 5.266E+01 2.038E+02 10
IX= FIEL: IY= IY= IY= IY= IX= IX= IY=	D V2 5 4 3 2 1 5	16 ALUES OF JZ 2.733E+00 3.118E+00 3.878E+00 4.889E+00 5.740E+00 6 3.530E+00	17 3.323E+00 4.010E+00 5.500E+00 7.804E+00 1.018E+01 7 1.780E+00	18 4.046E+00 5.340E+00 8.555E+00 1.474E+01 2.334E+01 8 1.196E+00	19 4.693E+00 6.876E+00 1.335E+01 3.003E+01 6.569E+01 9 1.035E+00	4.710E+00 7.414E+00 1.708E+01 5.266E+01 2.038E+02 10 9.273E-01
IX= FIEL: IY= IY= IY= IY= IX= IY= IY= IY=	D V4 5 4 3 2 1 5 4	16 ALUES OF JZ 2.733E+00 3.118E+00 3.878E+00 4.889E+00 5.740E+00 6 3.530E+00 4.782E+00	17 3.323E+00 4.010E+00 5.500E+00 7.804E+00 1.018E+01 7 1.780E+00 1.360E-01	18 4.046E+00 5.340E+00 8.555E+00 1.474E+01 2.334E+01 8 1.196E+00 3.041E-01	19 4.693E+00 6.876E+00 1.335E+01 3.003E+01 6.569E+01 9 1.035E+00 7.424E-01	4.710E+00 7.414E+00 1.708E+01 5.266E+01 2.038E+02 10 9.273E-01 8.518E-01
IX= FIEL: IY= IY= IY= IY= IX= IY= IY= IY=	D V2 5 4 3 2 1 5 4 3	16 ALUES OF JZ 2.733E+00 3.118E+00 4.889E+00 5.740E+00 6 3.530E+00 4.782E+00 1.006E+01	17 3.323E+00 4.010E+00 5.500E+00 7.804E+00 1.018E+01 7 1.780E+00 1.360E-01 -9.449E+00	18 4.046E+00 5.340E+00 8.555E+00 1.474E+01 2.334E+01 8 1.196E+00 3.041E-01 -2.860E+00	19 4.693E+00 6.876E+00 1.335E+01 3.003E+01 6.569E+01 9 1.035E+00 7.424E-01 2.359E-02	4.710E+00 7.414E+00 1.708E+01 5.266E+01 2.038E+02 10 9.273E-01 8.518E-01 7.405E-01
IX= FIEL: IY= IY= IY= IY= IX= IY= IY= IY= IY= IY=	D VA 5 4 3 2 1 5 4 3 2	16 ALUES OF JZ 2.733E+00 3.118E+00 4.889E+00 5.740E+00 6 3.530E+00 4.782E+00 1.006E+01 3.567E+01	17 3.323E+00 4.010E+00 5.500E+00 7.804E+00 1.018E+01 7 1.780E+00 1.360E-01 -9.449E+00 -6.725E+01	18 4.046E+00 5.340E+00 8.555E+00 1.474E+01 2.334E+01 8 1.196E+00 3.041E-01 -2.860E+00 -1.017E+01	19 4.693E+00 6.876E+00 1.335E+01 3.003E+01 6.569E+01 9 1.035E+00 7.424E-01 2.359E-02 -6.578E-01	4.710E+00 7.414E+00 1.708E+01 5.266E+01 2.038E+02 10 9.273E-01 8.518E-01 7.405E-01 7.994E-01
IX= FIEL: IY= IY= IY= IY= IY= IY= IY= IY= IY= IY=	D V2 5 4 3 2 1 5 4 3 2 1	16 ALUES OF JZ 2.733E+00 3.118E+00 3.878E+00 4.889E+00 5.740E+00 6 3.530E+00 4.782E+00 1.006E+01 3.567E+01 1.973E+02	17 3.323E+00 4.010E+00 5.500E+00 7.804E+00 1.018E+01 7 1.780E+00 1.360E-01 -9.449E+00 -6.725E+01 3.397E+01	18 4.046E+00 5.340E+00 8.555E+00 1.474E+01 2.334E+01 8 1.196E+00 3.041E-01 -2.860E+00 -1.017E+01 7.507E+00	19 4.693E+00 6.876E+00 1.335E+01 3.003E+01 6.569E+01 9 1.035E+00 7.424E-01 2.359E-02 -6.578E-01 2.739E+00	4.710E+00 7.414E+00 1.708E+01 5.266E+01 2.038E+02 10 9.273E-01 8.518E-01 7.405E-01 7.994E-01 1.541E+00
IX= FIEL: IY= IY= IY= IY= IY= IY= IY= IY= IY= IY=	D V2 5 4 2 1 5 4 3 2 1	16 ALUES OF JZ 2.733E+00 3.118E+00 3.878E+00 4.889E+00 5.740E+00 6 3.530E+00 4.782E+00 1.006E+01 3.567E+01 1.973E+02 11	17 3.323E+00 4.010E+00 5.500E+00 7.804E+00 1.018E+01 7 1.780E+00 1.360E-01 -9.449E+00 -6.725E+01 3.397E+01 12	18 4.046E+00 5.340E+00 8.555E+00 1.474E+01 2.334E+01 8 1.196E+00 3.041E-01 -2.860E+00 -1.017E+01 7.507E+00 13	19 4.693E+00 6.876E+00 1.335E+01 3.003E+01 6.569E+01 9 1.035E+00 7.424E-01 2.359E-02 -6.578E-01 2.739E+00 14	4.710E+00 7.414E+00 1.708E+01 5.266E+01 2.038E+02 10 9.273E-01 8.518E-01 7.405E-01 7.994E-01 1.541E+00 15
IX= FIEL IY= IY= IY= IY= IY= IY= IY= IY= IY= IX= IY= IY=	D V2 5 4 2 1 5 4 3 2 1 5	16 ALUES OF JZ 2.733E+00 3.118E+00 3.878E+00 4.889E+00 5.740E+00 6 3.530E+00 4.782E+00 1.006E+01 3.567E+01 1.973E+02 11 8.209E-01	17 3.323E+00 4.010E+00 5.500E+00 7.804E+00 1.018E+01 7 1.780E+00 1.360E-01 -9.449E+00 -6.725E+01 3.397E+01 12 7.233E-01	18 4.046E+00 5.340E+00 8.555E+00 1.474E+01 2.334E+01 8 1.196E+00 3.041E-01 -2.860E+00 -1.017E+01 7.507E+00 13 6.463E-01	19 4.693E+00 6.876E+00 1.335E+01 3.003E+01 6.569E+01 9 1.035E+00 7.424E-01 2.359E-02 -6.578E-01 2.739E+00 14 5.837E-01	4.710E+00 7.414E+00 1.708E+01 5.266E+01 2.038E+02 10 9.273E-01 8.518E-01 7.405E-01 7.994E-01 1.541E+00 15 5.266E-01
IX= FIEL IY= IY= IY= IY= IY= IY= IY= IY= IY= IY=	D V2 5 4 3 2 1 5 4 3 2 1 5 4	16 ALUES OF JZ 2.733E+00 3.118E+00 3.878E+00 4.889E+00 5.740E+00 6 3.530E+00 4.782E+00 1.006E+01 3.567E+01 1.973E+02 11 8.209E-01 8.001E-01	17 3.323E+00 4.010E+00 5.500E+00 7.804E+00 1.018E+01 7 1.780E+00 1.360E-01 -9.449E+00 -6.725E+01 3.397E+01 12 7.233E-01 7.223E-01	18 4.046E+00 5.340E+00 8.555E+00 1.474E+01 2.334E+01 8 1.196E+00 3.041E-01 -2.860E+00 -1.017E+01 7.507E+00 13 6.463E-01 6.485E-01	19 4.693E+00 6.876E+00 1.335E+01 3.003E+01 6.569E+01 9 1.035E+00 7.424E-01 2.359E-02 -6.578E-01 2.739E+00 14 5.837E-01 5.852E-01	4.710E+00 7.414E+00 1.708E+01 5.266E+01 2.038E+02 10 9.273E-01 8.518E-01 7.405E-01 7.994E-01 1.541E+00 15 5.266E-01 5.280E-01
IX= FIEL IY= IY= IY= IY= IY= IY= IY= IY= IY= IY=	D V2 5 4 3 2 1 5 4 3 2 1 5 4 3 3	16 ALUES OF JZ 2.733E+00 3.118E+00 3.878E+00 4.889E+00 5.740E+00 6 3.530E+00 4.782E+00 1.006E+01 3.567E+01 1.973E+02 11 8.209E-01 8.001E-01 8.039E-01	17 3.323E+00 4.010E+00 5.500E+00 7.804E+00 1.018E+01 7 1.780E+00 1.360E-01 -9.449E+00 -6.725E+01 3.397E+01 12 7.233E-01 7.223E-01 7.374E-01	18 4.046E+00 5.340E+00 8.555E+00 1.474E+01 2.334E+01 8 1.196E+00 3.041E-01 -2.860E+00 -1.017E+01 7.507E+00 13 6.463E-01 6.485E-01 6.580E-01	19 4.693E+00 6.876E+00 1.335E+01 3.003E+01 6.569E+01 9 1.035E+00 7.424E-01 2.359E-02 -6.578E-01 2.739E+00 14 5.837E-01 5.852E-01 5.899E-01	4.710E+00 7.414E+00 1.708E+01 5.266E+01 2.038E+02 10 9.273E-01 8.518E-01 7.405E-01 7.994E-01 1.541E+00 15 5.266E-01 5.280E-01 5.311E-01
IX= FIEL IY= IY= IY= IY= IY= IY= IY= IY= IY= IY=	D V2 5 4 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2	16 ALUES OF JZ 2.733E+00 3.118E+00 3.878E+00 4.889E+00 5.740E+00 6 3.530E+00 4.782E+00 1.006E+01 3.567E+01 1.973E+02 11 8.209E-01 8.001E-01 8.039E-01 8.808E-01	17 3.323E+00 4.010E+00 5.500E+00 7.804E+00 1.018E+01 7 1.780E+00 1.360E-01 -9.449E+00 -6.725E+01 3.397E+01 12 7.233E-01 7.223E-01 7.374E-01 7.775E-01	18 4.046E+00 5.340E+00 8.555E+00 1.474E+01 2.334E+01 8 1.196E+00 3.041E-01 -2.860E+00 -1.017E+01 7.507E+00 13 6.463E-01 6.485E-01 6.580E-01 6.756E-01	19 4.693E+00 6.876E+00 1.335E+01 3.003E+01 6.569E+01 9 1.035E+00 7.424E-01 2.359E-02 -6.578E-01 2.739E+00 14 5.837E-01 5.852E-01 5.899E-01 5.972E-01	4.710E+00 7.414E+00 1.708E+01 5.266E+01 2.038E+02 10 9.273E-01 8.518E-01 7.405E-01 7.994E-01 1.541E+00 15 5.266E-01 5.280E-01 5.311E-01 5.352E-01
IX= FIEL IY= IY= IY= IY= IY= IY= IY= IY= IY= IY=	D V2 5 4 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1	16 ALUES OF JZ 2.733E+00 3.118E+00 3.878E+00 4.889E+00 5.740E+00 6 3.530E+00 4.782E+00 1.006E+01 3.567E+01 1.973E+02 11 8.209E-01 8.039E-01 8.039E-01 8.808E-01 1.068E+00	17 3.323E+00 4.010E+00 5.500E+00 7.804E+00 1.018E+01 7 1.780E+00 1.360E-01 -9.449E+00 -6.725E+01 3.397E+01 12 7.233E-01 7.374E-01 7.775E-01 8.321E-01	18 4.046E+00 5.340E+00 8.555E+00 1.474E+01 2.334E+01 8 1.196E+00 3.041E-01 -2.860E+00 -1.017E+01 7.507E+00 13 6.463E-01 6.485E-01 6.580E-01 6.756E-01 6.934E-01	19 4.693E+00 6.876E+00 1.335E+01 3.003E+01 6.569E+01 9 1.035E+00 7.424E-01 2.359E-02 -6.578E-01 2.739E+00 14 5.837E-01 5.852E-01 5.899E-01 5.972E-01 6.036E-01	4.710E+00 7.414E+00 1.708E+01 5.266E+01 2.038E+02 10 9.273E-01 8.518E-01 7.405E-01 7.994E-01 1.541E+00 15 5.266E-01 5.280E-01 5.311E-01 5.352E-01 5.383E-01
IX= FIEL IY= IY= IY= IY= IY= IY= IY= IY=	D V2 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1	16 ALUES OF JZ 2.733E+00 3.118E+00 3.878E+00 4.889E+00 5.740E+00 6 3.530E+00 4.782E+00 1.006E+01 3.567E+01 1.973E+02 11 8.209E-01 8.039E-01 8.039E-01 8.808E-01 1.068E+00 16	17 3.323E+00 4.010E+00 5.500E+00 7.804E+00 1.018E+01 7 1.780E+00 1.360E-01 -9.449E+00 -6.725E+01 3.397E+01 12 7.233E-01 7.223E-01 7.374E-01 7.775E-01 8.321E-01 17	18 4.046E+00 5.340E+00 8.555E+00 1.474E+01 2.334E+01 8 1.196E+00 3.041E-01 -2.860E+00 -1.017E+01 7.507E+00 13 6.463E-01 6.485E-01 6.580E-01 6.756E-01 6.934E-01 18	19 4.693E+00 6.876E+00 1.335E+01 3.003E+01 6.569E+01 9 1.035E+00 7.424E-01 2.359E-02 -6.578E-01 2.739E+00 14 5.837E-01 5.852E-01 5.899E-01 5.972E-01 6.036E-01 19	4.710E+00 7.414E+00 1.708E+01 5.266E+01 2.038E+02 10 9.273E-01 8.518E-01 7.405E-01 7.994E-01 1.541E+00 15 5.266E-01 5.280E-01 5.311E-01 5.352E-01 5.383E-01 20
IX= FIEL IY= IY= IY= IY= IY= IY= IY= IY=	D V2 5 4 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 0 V2	16 ALUES OF JZ 2.733E+00 3.118E+00 3.878E+00 4.889E+00 5.740E+00 6 3.530E+00 4.782E+00 1.006E+01 3.567E+01 1.973E+02 11 8.209E-01 8.039E-01 8.039E-01 8.808E-01 1.068E+00 16 ALUES OF BX	17 3.323E+00 4.010E+00 5.500E+00 7.804E+00 1.018E+01 7 1.780E+00 1.360E-01 -9.449E+00 -6.725E+01 3.397E+01 12 7.233E-01 7.374E-01 7.775E-01 8.321E-01 17	18 4.046E+00 5.340E+00 8.555E+00 1.474E+01 2.334E+01 8 1.196E+00 3.041E-01 -2.860E+00 -1.017E+01 7.507E+00 13 6.463E-01 6.485E-01 6.580E-01 6.756E-01 6.934E-01 18	19 4.693E+00 6.876E+00 1.335E+01 3.003E+01 6.569E+01 9 1.035E+00 7.424E-01 2.359E-02 -6.578E-01 2.739E+00 14 5.837E-01 5.852E-01 5.899E-01 5.972E-01 6.036E-01 19	4.710E+00 7.414E+00 1.708E+01 5.266E+01 2.038E+02 10 9.273E-01 8.518E-01 7.405E-01 7.994E-01 1.541E+00 15 5.266E-01 5.280E-01 5.311E-01 5.352E-01 5.383E-01 20
IX= FIEL IY= IY= IY= IY= IY= IY= IY= IY=	D V2 5 4 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 5 4 5 4 5 5 4 5 5 5 5 5 5 5 5 5 5	16 ALUES OF JZ 2.733E+00 3.118E+00 3.878E+00 4.889E+00 5.740E+00 6 3.530E+00 4.782E+00 1.006E+01 3.567E+01 1.973E+02 11 8.209E-01 8.039E-01 8.039E-01 8.808E-01 1.068E+00 16 ALUES OF BX 7.675E-01	17 3.323E+00 4.010E+00 5.500E+00 7.804E+00 1.018E+01 7 1.780E+00 1.360E-01 -9.449E+00 -6.725E+01 3.397E+01 12 7.233E-01 7.223E-01 7.374E-01 7.775E-01 8.321E-01 17 1.218E+00	18 4.046E+00 5.340E+00 8.555E+00 1.474E+01 2.334E+01 8 1.196E+00 3.041E-01 -2.860E+00 -1.017E+01 7.507E+00 13 6.463E-01 6.485E-01 6.580E-01 6.756E-01 6.934E-01 18 1.841E+00	19 4.693E+00 6.876E+00 1.335E+01 3.003E+01 6.569E+01 9 1.035E+00 7.424E-01 2.359E-02 -6.578E-01 2.739E+00 14 5.837E-01 5.852E-01 5.899E-01 5.972E-01 6.036E-01 19 2.551E+00	4.710E+00 7.414E+00 1.708E+01 5.266E+01 2.038E+02 10 9.273E-01 8.518E-01 7.405E-01 7.994E-01 1.541E+00 15 5.266E-01 5.311E-01 5.352E-01 5.383E-01 20 2.985E+00
IX= FIEL IY= IY= IY= IY= IY= IY= IY= IY=	D V2 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 5 4 5 5 4 5 5 1 5 5 4 5 5 5 5 5 5	16 ALUES OF JZ 2.733E+00 3.118E+00 3.878E+00 4.889E+00 5.740E+00 6 3.530E+00 4.782E+00 1.006E+01 3.567E+01 1.973E+02 11 8.209E-01 8.001E-01 8.039E-01 8.808E-01 1.068E+00 16 ALUES OF BX 7.675E-01 1.319E+00	17 3.323E+00 4.010E+00 5.500E+00 7.804E+00 1.018E+01 7 1.780E+00 1.360E-01 -9.449E+00 -6.725E+01 3.397E+01 12 7.233E-01 7.223E-01 7.374E-01 7.775E-01 8.321E-01 17 1.218E+00 2.225E+00	18 4.046E+00 5.340E+00 8.555E+00 1.474E+01 2.334E+01 8 1.196E+00 3.041E-01 -2.860E+00 -1.017E+01 7.507E+00 13 6.463E-01 6.485E-01 6.580E-01 6.756E-01 6.934E-01 18 1.841E+00 3.612E+00	19 4.693E+00 6.876E+00 1.335E+01 3.003E+01 6.569E+01 9 1.035E+00 7.424E-01 2.359E-02 -6.578E-01 2.739E+00 14 5.837E-01 5.852E-01 5.899E-01 5.972E-01 6.036E-01 19 2.551E+00 5.493E+00	20 4.710E+00 7.414E+00 1.708E+01 5.266E+01 2.038E+02 10 9.273E-01 8.518E-01 7.405E-01 7.994E-01 1.541E+00 15 5.266E-01 5.380E-01 5.311E-01 5.352E-01 5.383E-01 20 2.985E+00 6.964E+00
IX= IX= IY= IY= IY= IY= IY= IY= IY= IY	D V2 5 4 3 2 1 5 4 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5	16 ALUES OF JZ 2.733E+00 3.118E+00 3.878E+00 4.889E+00 5.740E+00 6 3.530E+00 4.782E+00 1.006E+01 3.567E+01 1.973E+02 11 8.209E-01 8.001E-01 8.039E-01 8.808E-01 1.068E+00 16 ALUES OF BX 7.675E-01 1.319E+00 1.699E+00	17 3.323E+00 4.010E+00 5.500E+00 7.804E+00 1.018E+01 7 1.780E+00 1.360E-01 -9.449E+00 -6.725E+01 3.397E+01 12 7.233E-01 7.223E-01 7.374E-01 7.775E-01 8.321E-01 17 1.218E+00 2.225E+00 3.036E+00	18 4.046E+00 5.340E+00 8.555E+00 1.474E+01 2.334E+01 8 1.196E+00 3.041E-01 -2.860E+00 -1.017E+01 7.507E+00 13 6.463E-01 6.485E-01 6.580E-01 6.756E-01 6.934E-01 18 1.841E+00 3.612E+00 5.424E+00	19 4.693E+00 6.876E+00 1.335E+01 3.003E+01 6.569E+01 9 1.035E+00 7.424E-01 2.359E-02 -6.578E-01 2.739E+00 14 5.837E-01 5.852E-01 5.899E-01 5.972E-01 6.036E-01 19 2.551E+00 5.493E+00 9.601E+00	20 4.710E+00 7.414E+00 1.708E+01 5.266E+01 2.038E+02 10 9.273E-01 8.518E-01 7.405E-01 7.994E-01 1.541E+00 15 5.266E-01 5.380E-01 5.311E-01 5.383E-01 20 2.985E+00 6.964E+00 1.449E+01

IY=	1	1.689E+00	3.200E+00	6.731E+00	1.687E+01	3.802E+01
	E	2 6678.00	1 7625.00		5 6 640E 01	A 195m 01
$II = IV_{-}$	5	2.0075+00 6 100F±00	3 4965+00	1 8775+00	1 0085+00	4.103E-01
II = IV	4	1 2/2E+00	5.490E+00	2 127E+00	1 6305+00	8 882 E - 01
1I =	ວ າ	1.3426+01 2 /775±01	1 178F,01	J.1276+00	2 2048+00	1 077E+00
II = TV	2	2.4776+01 2 777F+01	1 5665.01	4.000E+00 5 629E+00	2.2046+00	1.0776+00 1 1476+00
I Y = I X =	T	11	12	13	14	15
IY=	5	2.655E-01	1.708E-01	1.125E-01	7.671E-02	5.730E-02
IY=	4	3.990E-01	2.518E-01	1.665E-01	1.157E-01	8.465E-02
IY=	3	5.069E-01	3.087E-01	2.006E-01	1.382E-01	9.968E-02
IY=	2	5.839E-01	3.498E-01	2.268E-01	1.565E-01	1.123E-01
IY=	1	6.259E-01	3.842E-01	2.570E-01	1.826E-01	1.322E-01
IX=		16	17	18	19	20
FIEL	Dν	ALUES OF BY				
IY=	5	1.566E+00	1.861E+00	1.670E+00	1.021E+00	-3.155E-02
IY=	4	2.167E+00	2.771E+00	2.747E+00	1.923E+00	1.629E-01
TY=	3	2.680E+00	3.782E+00	4.351E+00	3.798E+00	1.017E+00
TY =	2	3.043E+00	4.740E+00	6.325E+00	7.092E+00	3.215E+00
	1	2.748E+00	4.494E+00	6.443E+00	7.536E+00	4.062E+00
	-	6	7	8	9	10
	5	-1102E+00	-1.714E+00	-1.805E+00	-1.666E+00	-1.492E+00
	4	-1 754E+00	-2.667E+00	-2.535E+00	-2.152E+00	-1.873E+00
	2	-2.536E+00	-3.834E+00	-3.063E+00	-2.275E+00	-1.957E+00
	2	-3 211F \pm 00	-5.152E+00	-3.474E+00	-2.228E+00	-1.900E+00
11- TV-	1	-3.2118+00 -2 445F±00	-5.305E+00	-3.959E+00	-2.2200+00 -2.295E+00	-1.650E+00
IX =	-	11	12	13	14	15
IY=	5	-1.324E+00	-1.166E+00	-1.015E+00	-8.572E-01	-6.298E-01
IY=	4	-1.648E+00	-1.447E+00	-1.257E+00	-1.058E+00	-7.714E-01
IY=	3	-1.717E+00	-1.505E+00	-1.307E+00	-1.100E+00	-8.016E-01
IY=	2	-1.644E+00	-1.435E+00	-1.247E+00	-1.052E+00	-7.688E-01
IY=	1	-1.343E+00	-1.158E+00	-1.005E+00	-8.500E-01	-6.269E-01
IX=		16	17	18	19	20
FIEL	D V	ALUES OF BZ				
IY=	5	7.672E-01	6.594E-01	8.979E-01	8.899E-01	-8.580E-02
IY=	4	3.971E+00	4.284E+00	4.741E+00	4.247E+00	3.295E-01
IY=	3	6.971E+00	8.166E+00	9.956E+00	1.097E+01	3.141E+00
IY=	2	1.021E+01	1.331E+01	1.872E+01	2.738E+01	1.352E+01
IY=	1	1.409E+01	2.035E+01	3.130E+01	5.505E+01	3.434E+01
IX=	:	6	7	8	9	10
IY=	5	-1.774E+00	-2.350E+00	-1.879E+00	-1.484E+00	-1.052E+00
IY=	4	-6.439E+00	-8.536E+00	-6.626E+00	-5.481E+00	-4.194E+00
IÝ=	3	-1.417E+01	-1.910E+01	-1.309E+01	-9.941E+00	-7.113E+00
IY=	2	-2.551E+01	-3.491E+01	-2.013E+01	-1.352E+01	-9.570E+00
IY =	1	-3.938E+01	-5.607E+01	-2.835E+01	-1.702E+01	-1.177E+01
IX=		11	12	13	14	15
IY=	5	-6.503E-01	-3.443E-01	-1.554E-01	-9.119E-02	-1.995E-01
IY=	4	-3.112E+00	-2.311E+00	-1.753E+00	-1.389E+00	-1.178E+00
IY=	3	-5.192E+00	-3.904E+00	-3.015E+00	-2.388E+00	-1.933E+00

A 3-7

IY=	2	-6.982	E+00 -	-5.305E+00	-4.151E+00	-3.305E+00	-2.634E+00
IY=	1	-8.679	E+00 -	-6.736E+00	-5.392E+00	-4.366E+00	-3.456E+00
IX=		16		17	18	19	20
FIEL	D_VA	LUES C	F THCN				
IY=	5	1.802	E+00	1.783E+00	1.760E+00	1.743E+00	1.730E+00
IY=	4	1.801	E+00	1.781E+00	1.757E+00	1.740E+00	1.724E+00
IY=	3	1.800)E+00	1.779E+00	1.752E+00	1.735E+00	1.711E+00
IY=	2	1.798	E+00	1.777E+00	1.749E+00	1.731E+00	1.706E+00
IY=	1	1.798	E+00	1.775E+00	1.748E+00	1.729E+00	1.705E+00
IX=	_	6		7	8	9	
IY=	5	1.718	SE+00	1.709E+00	1.709E+00	1.710E+00	1.714E+00
IY=	4	1.706	E+00	1.706E+00	1.706E+00	1.708E+00	1.710E+00
IY =	3	1.705	E+00	1.706E+00	1.706E+00	1.707E+00	1.709E+00
IY =	2	1.704	E+00	1.708E+00	1.706E+00	1.707E+00	1.710E+00
IY=	1	1.704	E+00	1.708E+00	1.708E+00	1.709E+00	1.711E+00
IX=	-	11		12	13	14	15
IY=	5	1.718	SE+00	1.723E+00	1.728E+00	1.732E+00	1.736E+00
IY=	4	1.717	/E+00	1.722E+00	1.728E+00	1.732E+00	1.736E+00
IY=	3	1.716	5E+00	1.722E+00	1.727E+00	1.732E+00	1.736E+00
IY=	2	1.716	5E+00	1.722E+00	1.727E+00	1.732E+00	1.735E+00
IY=	1	1.716	5E+00	1.722E+00	1.727E+00	1.732E+00	1.735E+00
IX=		16		17	18	19	20
FIELI	AV C	LUES C	OF ELCN				
IY=	5	1.376	5E+05	1.338E+05	1.294E+05	1.244E+05	1.188E+05
IY=	4	1.373	3E+05	1.335E+05	1.289E+05	1.231E+05	1.141E+05
IY=	3	1.369)E+05	1.330E+05	1.279E+05	1.208E+05	1.030E+05
IY=	2	1.367	7E+05	1.326E+05	1.270E+05	1.193E+05	9.808E+04
IY=	1	1.366	5E+05	1.323E+05	1.266E+05	1.183E+05	9.677E+04
IX=		6		7	8	9	10
IY=	5	1.094	1E+05	1.016E+05	1.020E+05	1.028E+05	1.055E+05
IY=	4	9.842	2E+04	9.846E+04	9.879E+04	1.004E+05	1.023E+05
IY=	3	9.692	2E+04	9.855E+04	9.859E+04	9.965E+04	1.019E+05
IY=	2	9.579)E+04	1.004E+05	9.894E+04	1.002E+05	1.025E+05
IY=	1	9.519	9E+04	1.006E+05	1.005E+05	1.014E+05	1.033E+05
IX=	_	11		12	13	14	15
IY=	5	1.092	2E+05	1.132E+05	1.176E+05	1.197E+05	1.212E+05
IY=	4	1.080)E+05	1.127E+05	1.173E+05	1.197E+05	1.211E+05
IY=	3	1.075	5E+05	1.123E+05	1.170E+05	1.196E+05	1.211E+05
IY=	2	1.075	5E+05	1.122E+05	1.169E+05	1.195E+05	1.210E+05
IY=	1	1.078	3E+05	1.122E+05	1.168E+05	1.195E+05	1.210E+05
IX=		16		17	18	19	20
* * * *	* * * *	*****	*****	* * * * * * * * * * * *	****	*****	* * * * *
TIME	STF	-	1 SWEE	P NO = 400	ZSLAB NO=	2 ITERN N	0= 1
	- * *						_
តា ហា	Бле	ካር አጥ		1 т 7— 7	, ISWEED- 10	ለ ተናጥፑ₽⊶	1
FIFE	D 779 5 7 5	LUES (ΓΓΩΙ ΓΓ Ρ1	-, - <u>2</u>	·/ IONGDE- 40	v, torer-	~
TV=	5	1.053	3E+02	1.104E+02	1 4085+02	2.192E+02	3.698E+02
	-				**********		

IY=	4	1.062E+02	1.068E+02	1.334E+02	2.422E+02	6.140E+02
IY=	3	9.963E+01	9.756E+01	1.324E+02	3.307E+02	1.323E+03
IY=	2	8.376E+01	6.236E+01	6.762E+01	2.547E+02	4.137E+02
IY=	1	7.428E+01	1.739E+01	-3.513E+00	1.126E+03	-3.329E+03
IX=		6	7	8	9	10
TY=	5	5.877E+02	9.118E+02	9.417E+02	7.232E+02	1.166E+02
	Δ	1.732E+03	1.712E+03	1.657E+03	1.541E+03	7.269E+02
TV-	2	2.604E+03	1.410E+03	1 181E+03	1 221E+03	7 947E+02
TV-	2	2.0041103 2.564F±02	-9 103E+00	2.507E+02	6 413E±02	5 151F±02
	1	2.5040102	_1 260F+03	_2.3075102 _2.248F±02	3 1668+02	_/ 608F+02
11- TV-	т	11	10	12		15
	E	1 225 - 01	2 206	1J 6 /21m,01	14 0 77/ E+01	1 0100.02
11=	C A	1.3456+01	3.300E+01	0.421E+01	0.//46+UI 1.050m.00	
IY =	4	1.3396+02	8.05/6+01	9.1516+01	1.0506+02	1.1416+02
IY=	3	1./35E+02	1.030E+02	1.048E+02	1.1336+02	1.1996+02
IY=	2	1.540E+02	1.133E+02	1.158E+02	1.215E+02	1.259E+02
IY=	1	7.406E+01	1.298E+02	1.414E+02	1.405E+02	1.395E+02
IX=		16	17	18	19	20
FIEL	D V	ALUES OF U1				
IY=	5	3.383E-01	3.380E-01	3.377E-01	3.374E-01	3.375E-01
IY=	4	3.383E-01	3.380E-01	3.375E-01	3.370E-01	3.367E-01
IY=	3	3.383E-01	3.378E-01	3.372E-01	3.362E-01	3.377E-01
IY=	2	3.382E-01	3.377E-01	3.368E-01	3.352E-01	-7.760E-01
IY=	1	3.382E-01	3.377E-01	3.369E-01	3.359E-01	-2.478E+01
IX=	_	6	7	8	9	10
TY=	5	3.384E-01	3.392E-01	3.404E-01	3.421E-01	3.421E-01
	۵	3 386E - 01	6.279E+00	3.923E+00	3.426E-01	3.428E-01
TV=	3	1.924E+01	1 405E+01	5.845E+00	3.424E-01	3.429E-01
	2	5 460F±00	1 523E+00	-2 470E+00	3 423E - 01	3.429E-01
	1	-2 010F \pm 01	-1 300F \pm 01	-7 800E+00	3.426E-01	3 431E - 01
TT-	Ŧ		12	12	11	15
	E		12 2 /1/E 01	2 /11 = 01	2 1000-01	3 4088-01
1I =	2	3.41/E-01	3.414E-01	3.4110-01	2 400E 01	2 400E-01
II = II	4	3.4196-01	3.414E-01	3.411E-01	3.4096-01 2 400m 01	3.400E-01
1 Y ==	3	3.420E-01	3.414E-01	3.411E-01	3.4096-01	3.4006-01
1Y =	2	3.420E-01	3.4156-01	3.4116-01	3.4098-01	3.4086-01
IY =	1	3.421E-01	3.415E-01	3.411E-01	3.409E-01	3.4088-01
IX=		16	17	18	19	20
FIEL	D V	ALUES OF V1				
IY=	4	1.385E-04	2.175E-04	3.796E-04	6.949E-04	1.272E-03
IY=	3	2.092E-04	3.214E-04	5.413E-04	9.612E-04	1.880E-03
IY=	2	2.044E-04	3.051E-04	4.891E-04	8.314E-04	1.739E-03
IY=	1	1.305E-04	1.861E-04	2.554E-04	2.273E-04	-6.744E+00
IX=		6	7	8	9	10
IY=	4	1.921E-03	5.457E-04	8.151E-04	1.146E-03	1.070E-03
IY=	3	9.601E-04	-1.668E+00	-6.024E+00	-4.671E+00	3.714E-04
IY=	2	3.831E+00	-1.359E+01	-1.630E+01	-1.097E+01	2.211E-04
IY=	1	7.730E+00	-1.429E+01	-1.311E+01	-8.543E+00	2.633E-04
IX=	_	11	12	13	14	15
IY=	4	3.747E-04	1.614E-04	7.939E-05	4.410E-05	2.911E-05
IY=	3	2.636E-04	1.666E-04	1.007E-04	6.233E-05	4.322E-05
	-					

.

IY=	2	1.875E-04	1.355E-04	8.984E-05	5.906E-05	4.232E-05
1Y =	T	1.445E-04	9.0//E-05	5.8596-05	3.8056-05	2.7858-05
		10 ID DD DD DD	1/	18	19	20
LIEPI	יי	ALUES OF WI	1 0005 03	1 () 1 5 0 2	2 4015 02	2 742- 02
T X =	C A	7.9918-04	1.090E-03		2.4916-03	3./42E-03
1Y =	4	7.103E-04	9.820E-04	1.514E-03	2.49/8-03	4.2488-03
IY =	3	6.6/9E-04	9.456E-04	1.523E-03	2./IIE-03	5.606E-03
I Y =	2	6.209E-04	8.8//E-04	1.4296-03	2.411E-03	5.102E-03
IY=	T	5.311E-04	1.62/E-04	1.22/E-03	1.993E-03	4.235E-03
IX=	-			8	9	
I Y =	5	5.069E-03	5.6/1E-03	6.3/1E-03	6.038E-03	3.833E-03
IY=	4	6./31E-03	4.15/E-03	5.380E-03	5.841E-03	4.663E-03
IY=	3	4.30/E-03	3.046E-03	4.148E-03	5.330E-03	4.826E-03
IY=	2	1.1/1E+01	8.420E+00	7.502E+00	5.288E-03	4.941E-03
IY=	1	-2.332E+01	-6.579E+00	2.277E+00	5.992E-03	5.197E-03
IX=	-	11	12	13	14	15
IY=	5	2.272E-03	1.328E-03	7.909E-04	5.036E-04	3.679E-04
IY = .	4	2.359E-03	1.302E-03	7.551E-04	4.741E-04	3.444E-04
IY=	3	2.424E-03	1.317E-03	7.502E-04	4.623E-04	3.316E-04
IY=	2	2.480E-03	1.336E-03	7.495E-04	4.533E-04	3.207E-04
IY=	1	2.525E-03	1.328E-03	7.289E-04	4.321E-04	3.017E-04
IX=		16	17	18	19	20
FIELI	י כ	VALUES OF ENU	L			
IY=	5	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	4	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	3	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	2	1.000E+06	1.000E+06	1.000E+06	1.000E+06	3.570E-03
IY=	1	1.000E+06	1.000E+06	1.000E+06	1.000E+06	3.570E-03
IX=		6	7	8	9	10
IY=	5	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	4	1.000E+06	3.570E-03	3.570E-03	3.570E-03	1.000E+06
IY=	3	3.570E-03	3.570E-03	3.570E-03	3.570E-03	1.000E+06
IY=	2	3.570E-03	3.570E-03	3.570E-03	3.570E-03	1.000E+06
IY=	1	3.570E-03	3.570E-03	3.570E-03	3.570E-03	1.000E+06
IX =	_	11	12	13	14	15
IY=	5	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	4	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	3	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	2	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	1	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IX=		16	17	18	19	20
FIEL	D_1	VALUES OF H1				
IY=	5	-2.808E+02	-2.445E+02	-2.015E+02	-1.521E+02	-9.947E+01
IY=	4	-2.793E+02	-2.418E+02	-1.962E+02	-1.416E+02	-/.9/4E+01
IY=	3	-2.769E+02	-2.376E+02	-1.876E+02	-1.233E+02	-4.206E+01
IY=	2	-2.746E+02	-2.334E+02	-1.791E+02	-1.041E+02	1.282E+01
IY=	1	-2.733E+02	-2.311E+02	-1.749E+02	-9.780E+01	1.023E+01
IX=	_	6	7	8	9	10
IY=	5	-5.148E+01	-1.903E+01	-8.662E+00	-9.995E+00	-2.166E+01

IY=	4	-2.190E+01	2.224E+01	2.119E+01	1.262E+01	-1.131E+01
IY=	3	3.328E+01	3.145E+01	2.734E+01	1.788E+01	-6.633E+00
IY=	2	3.581E+01	3.106E+01	2.623E+01	1.612E+01	-6.116E+00
TY=	1	1.391E+01	2.301E+01	2.096E+01	1.308E+01	-7 292E+00
TX=	-	11	12	13	14	15
TV =	5	-3.868E+01	-5.871E+01	-8008E+01	-9 802E±01	_1 121E+02
TV =	Δ	-3 379E+01	-5.613E+01	-7.890F+01	-9.7/3F+01	-1 118F+02
	2	-3.037F+01	-5 373E+01	-7.757E+01	-9.667 ± 01	-1.110E+UZ
	2	-2.016=.01	-5.3/35+01 . 5. 3/95,01	7 6705.01		-1.1136+02
II = IV	1	-2.910E+01	-J.2406+01			-1.1096+02
11= TV	Ŧ	-2.92/6+01 16	-3.2106+01	-/.03/E+01	-9.5056+01	-1.10/6+02
TTELL	, ,	בט מאנודים היאים	1	10	19	20
TV-	י י ב י	2 101 P 102	2 5525,02	2 0005.02	A 471E+02	4 0055.02
11 =	5	3.1916+02 2 206E.02	3.5555404		4.4/10+02	4.3330HUZ
$II = TV_{-}$	4	3.200E+02	3.5/96+02	4.0336+02	4.5/06+02	5.1926+02
11 =	2 2	3.2296+02 2.2528.02	3.0216+02	4.1195+02	4./596+02	5.50/6+02
I I =	2	3.2526+02	3.0026+02	4.2026+02	4.9496+02	0.113E+02
$II = IV_{-}$	T	3.200E+U2	3.080E+UZ	4.244E+U2 0	5.UIZE+UZ	0.08/E+02
	c	0 E 472m,02	/ 5 7068.00		9 E 006m.00	
1 I =	2	5.4/36+02	5.7966+02	5.0995+02	5.000E+U2	5.7706+02
1 X ==	4	5./0/E+U2	6.2066+02	0.1908+02	0.111E+02	5.8725+02
1 Y ==	3	6.316E+U2	6.298E+U2	6.25/E+U2	6.163E+U2	5.9196+02
IY=	2	6.341E+02	6.294E+02	6.246E+02	6.145E+02	5.924E+02
IY=	Ţ	6.123E+02	6.214E+02	6.194E+02	6.115E+02	5.912E+02
IX=	_	11	12	13	14	15
IY=	5	5.600E+02	5.401E+02	5.188E+02	5.010E+02	4.869E+02
I Y=	4	5.649E+02	5.427E+02	5.200E+02	5.016E+02	4.873E+02
IY=	3	5.683E+02	5.450E+02	5.213E+02	5.023E+02	4.878E+02
IY =	2	5.695E+02	5.463E+02	5.222E+02	5.029E+02	4.882E+02
IY =	1	5.694E+02	5.466E+02	5.225E+02	5.031E+02	4.884E+02
IX=		16	17	18	19	20
FIELI	7_D	ALUES OF DEL	H			
IY=	5	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	3	0.000E+00	0.000E+00	0.000E+00	0.000E+00	3.402E+01
IY=	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.400E+02
IY=	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	2.419E+02
IX=		6	7	8	9	10
IY=	5	3.847E-01	1.237E+02	1.635E+02	1.587E+02	1.147E+02
IY=	4	1.114E+02	2.779E+02	2.756E+02	2.436E+02	1.538E+02
IY=	3	3.157E+02	3.114E+02	2.988E+02	2.648E+02	1.720E+02
IY=	2	3.250E+02	3.109E+02	2.954E+02	2.584E+02	1.741E+02
IY=	1	2.613E+02	2.856E+02	2.767E+02	2.471E+02	1.696E+02
IX=		11	12	13	14	15
IY=	5	5.035E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	4	6.891E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	3	8.210E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	2	8.674E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	1	8.632E+01	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IX=		16	17	18	19	20

FIELI) V	ALUES OF EPO	Γ			
IY=	5	1.943E-04	2.218E-04	2.465E-04	2.635E-04	2.659E-04
IY=	4	2.015E-04	2.327E-04	2.636E-04	2.882E-04	2.952E-04
IY=	3	2.142E-04	2.531E-04	2.980E-04	3.428E-04	3.665E-04
IY=	2	2.289E-04	2.783E-04	3.460E-04	4.322E-04	5.107E-04
TV=	1	2.393E-04	2.980E-04	3.898E-04	5.355E-04	7.439E-04
IX=	-	6	7	8	9	10
TY=	5	2.490E-04	2.176E-04	1.850E-04	1.546E-04	1.268E-04
TV=	4	2.724E-04	2.272E-04	1.896E-04	1.574E-04	1.286E-04
	, ,	3 319E 01	$2.438F_{04}$	1 9855-04	1 636E - 04	1 326E - 04
	2	J. 520E_04	2.430 - 04 2.688 - 04	2 1705-04	1 752E_0/	1 388F-04
1 I == TV	2	4.020E-04 7 120E 01		2.1/05-04	1 0525-04	1.300E-04
	Ŧ	11	4.2/26-04	2.7556-04	1.9556-04	1.4006-04
1 X=	r		14			10 000 00
IY =	5	1.018E-04	7.955E-05	5.98/8-05	4.244E-05	2.0958-05
IY =	4	1.029E-04	8.020E-05	6.025E-05	4.266E-05	2./10E-05
IY=	3	1.052E-04	8.146E-05	6.093E-05	4.306E-05	2.736E-05
IY=	2	1.083E-04	8.303E-05	6.173E-05	4.349E-05	2.763E-05
IY=	1	1.112E-04	8.425E-05	6.229E-05	4.378E-05	2.780E-05
IX=		16	17	18	19	20
FIELI	o v	ALUES OF JX				
IY=	5	-1.956E+01	-1.754E+01	-1.364E+01	-6.196E+00	4.252E+00
IY=	4	-2.141E+01	-2.082E+01	-1.804E+01	-9.933E+00	4.366E+00
IY=	3	-2.500E+01	-2.791E+01	-2.880E+01	-2.107E+01	2.077E+00
IY=	2	-2.973E+01	-3.878E+01	-4.888E+01	-4.890E+01	-9.974E+00
IY=	1	-3.369E+01	-4.972E+01	-7.522E+01	-1.040E+02	-5.061E+01
IX=	_	6	7	8	9	10
IY=	5	1.373E+01	1.751E+01	1.690E+01	1.562E+01	1.441E+01
IY=	4	1.834E+01	2.142E+01	1.776E+01	1.576E+01	1.457E+01
TY=	3	3.093E+01	3.316E+01	2.011E+01	1.687E+01	1.548E+01
	2	$6.004E \pm 01$	6 086E+01	$2.355E\pm01$	2.008E+01	1.770E+01
	1	8 128F+01	1 118F±02	5 005F+01	3 3348+01	$2 231 E \pm 01$
TT-	-	11	12	12	1/	15
TV-	5	1 2256401	1 210F±01	1 0085+01	14 0 0025100	0 003ET00
$II = TV_{-}$	7	1 2445.01	1 2265-01	1 1000.01	9.9026700	9.0935+00
11 =	4	1.000.01	1.2205+01	1 1 2 2 2 . 01	9.9056+00	9.1206+00
1 Y =	3	1.4098+01	1.20/E+01	1.1328+01	1.0096+01	9.1/06+00
1Y=	2	1.5346+01	1.331E+01	1.1646+01	1.0248+01	9.22/6+00
IY=	Т	1.700E+01	1.396E+01	1.191E+01	1.035E+01	9.2686+00
IX=	. .	16	17	18	19	20
LIEPI	ע_ע	ALUES OF JY	2 667- 00		7 700-00	0 7405.00
1Y =	5	2.4/6E+00	3.66/6+00	5.5686+00	7.732E+00	8./405+00
IY=	4	6.878E+00	1.049E+01	1.668E+01	2.456E+01	2.9366+01
IY=	3	9.441E+00	1.524E+01	2.649E+01	4.406E+01	5.959E+01
IY=	2	8.619E+00	1.498E+01	2.944E+01	5.862E+01	9.966E+01
IY=	1	3.579E+00	6.567E+00	1.406E+01	3.149E+01	6.826E+01
IX=		6	7	8	9	10
IY=	5	6.556E+00	2.519E+00	1.176E+00	7.320E-01	4.838E-01
IY=	4	2.199E+01	6.644E+00	3.399E+00	2.302E+00	1.528E+00
IY=	3	4.765E+01	1.035E+01	6.886E+00	4.524E+00	2.693E+00
IY=	2	9.548E+01	4.607E+01	1.941E+01	8.117E+00	3.583E+00

IY=	1	7.083E+01	3.994E+01	1.475E+01	5.163E+00	1.933E+00
	c	11 2 101 c 01	1 002m 01	1 1 25 5 01	14 6 001m 00	12
11=	2	5.101E-01	I.0926-01 E E00p 01	1.125E-01 2 165m 01	0.021E-02 1 066E 01	4.3905-02
1Y=	4	9.41/E-UI	5.508E-01	3.105E-UI	1.0006-01	1.23/E-01
IY =	3	1.4986+00	8.098E-01	4.393E-01	2.4/66-01	1.599E-01
IY=	2	1.656E+00	7.9/9E-01	4.026E-01	2.159E-01	1.355E-01
IY=	1	7.889E-01	3.497E-01	1.673E-01	8.663E-02	5.331E-02
IX=		16	17	18	19	20
FIEL	D V	ALUES OF JZ				
IY=	5	7.993E+00	9.493E+00	1.126E+01	1.271E+01	1.270E+01
IY=	4	8.934E+00	1.111E+01	1.418E+01	1.744E+01	1.843E+01
IY=	3	1.075E+01	1.451E+01	2.107E+01	3.036E+01	3.666E+01
IY=	2	1.309E+01	1.949E+01	3.326E+01	5.980E+01	9.320E+01
IY=	1	1.498E+01	2.426E+01	4.836E+01	1.135E+02	2.895E+02
 TX=	-	6	7	8	9	10
TV=	5	$1^{013E+01}$	6 278E+00	4462E+00	3.666E+00	3.172E+00
	1	1 3315+01	1 111F+00	3 2285+00	3 2105+00	3 0495+00
	2	2 /20E+01	4.441D+00	5.52205400	2 20/E+00	2 08/5+00
	ວ າ	2.4306+U1 6 650m.01	-0.000E+00	-3.332E-01	2.3346400	2.3040+00
1 X =	4	0.0006+01	-0.302E+U1	-/./296+00		3.3036+00
1 Y =	T	Z./4/E+UZ	0.23/6+01	1.0516+01	8.103E+00	4.0226+00
IX=	_	11	12	13	14	15
IY=	5	2.786E+00	2.4/0E+00	2.230E+00	2.032E+00	1.855E+00
IY=	4	2.761E+00	2.475E+00	2.238E+00	2.038E+00	1.859E+00
IY=	3	2.817E+00	2.523E+00	2.264E+00	2.052E+00	1.868E+00
IY=	2	3.046E+00	2.630E+00	2.310E+00	2.072E+00	1.879E+00
IY=	1	3.454E+00	2.757E+00	2.353E+00	2.089E+00	1.888E+00
IX=		16	17	18	19	20
FIEL	DV	ALUES OF BX				
IY=	5	1.892E+00	2.853E+00	4.123E+00	5.497E+00	6.307E+00
IY=	4	2.877E+00	4.641E+00	7.236E+00	1.055E+01	1.302E+01
IY=	3	3.648E+00	6.220E+00	1.057E+01	1.748E+01	2.446E+01
IY=	2	3.937E+00	6.975E+00	1.286E+01	2.465E+01	4.057E+01
IY=	1	3.724E+00	6.632E+00	1.266E+01	2.694E+01	5.247E+01
 TX=	-	6	7	8	9	10
TV=	5	5 7558+00	4 127E+00	2725E+00	1.798E+00	1.190E+00
	1	1 180F+01	$7 407 \pm 00$	4 414E+00	2.728E+00	1.703E+00
	2	2 2805+01	1 266 - 1	6 830E+00	$3.871 E \pm 0.0$	2 240E+00
	י ר	2.2006701	1.2000+01 2 126 F+01	1 000550+00	5 0325+00	2.2405100
II =	4	5.9556+UL		1 10046401	5 251 2.00	2.00000+00
T X =	T	5.2146+01	2.5956+01	1.1226+01	3.3316+00	1 5
1X=	-			13		
IY =	5	7.928E-01	5.361E-U1	3./11E-U1	2.653E-01	2.0058-01
IY =	4	1.082E+00	7.085E-01	4.8166-01	3.40/E-01	2.5156-01
IY=	3	1.350E+00	8.562E-01	5./2IE-01	4.006E-01	2.91/E-01
IY=	2	1.546E+00	9.638E-01	6.408E-01	4.482E-01	3.245E-01
IY=	1	1.617E+00	1.019E+00	6.877E-01	4.874E-01	3.537E-01
IX=		16	17	18	19	20
FIEL	D	VALUES OF BY				
IY=	5	2.822E+00	3.216E+00	2.909E+00	1.841E+00	9.978E-02
IY=	4	3.869E+00	4.747E+00	4.714E+00	3.377E+00	5.059E-01

.

IY=	3	4.764E+00	6.408E+00	7.280E+00	6.313E+00	1.867E+00
IY=	2	5.324E+00	7.838E+00	1.022E+01	1.086E+01	4.828E+00
IY=	1	4.819E+00	7.388E+00	1.037E+01	1.233E+01	6.751E+00
IX=		6	7	8	9	10
IY=	5	-1.697E+00	-2.761E+00	-2.986E+00	-2.819E+00	-2.560E+00
IY=	4	-2.697E+00	-4.261E+00	-4.145E+00	-3.637E+00	-3.212E+00
I Y=	3	-3.989E+00	-6.083E+00	-4.898E+00	-3.902E+00	-3.397E+00
IY=	2	-5.230E+00	-8.076E+00	-5.289E+00	-3.863E+00	-3.299E+00
IY=	1	-4.574E+00	-8.944E+00	-6.247E+00	-3.888E+00	-2.869E+00
IX=		11	12	13	14	15
IY=	5	-2.291E+00	-2.027E+00	-1.764E+00	-1.482E+00	-1.112E+00
IY=	4	-2.845E+00	-2.504E+00	-2.172E+00	-1.818E+00	-1.350E+00
IY=	3	-2.993E+00	-2.626E+00	-2.275E+00	-1.902E+00	-1.410E+00
TY =	2	-2.864E+00	-2.497E+00	-2.162E+00	-1.810E+00	-1.347E+00
TV=	1	-2 363E+00	-2.033E+00	-1.756E+00	-1.474E+00	-1.109E+00
TX=	*	16	17	18	19	20
FTEL	v c	ALUES OF BZ	±,	20		20
TV =	้ร่	1 353E+00	1 377E+00	1.373E+00	9.717E-01	-1.757E-01
	Δ	3 549E+00	3 901 8+00	4 024E+00	3 137E + 00	9 540E-02
	2	5 969F±00	6 993E+00	7 8975+00	7 2685+00	1 588E+00
	2	9.505E+00 8.506E+00	1 074F+01	1 3/8F±01	1 /00F+01	5 8765+00
11- TV-	1	1 079F+01	1 //58+01	1 0385+01	2 /07F+01	1 2065+00
TT-	Ŧ	6	1.4436401	0	0	10
IA≓ TV_	E	1 700 - 00	2 5125.00	2 460 - 00	2 1455.00	1 7295,00
	5	-1.7006+00	-2.JIJE+00			
1 Y =	4	-4.200E+00	-0.2916+00			-3.9126+00
1Y =	3	-/.966E+00	-1.2066+01	-1.02/6+01	-8.14/6+00	-0.1906+00
1Y=	2	-1.236E+U1	-1.936E+UI	-1.4996+01	-1.1016+01	-8.159E+00
IY=	1	-1.527E+01	-2.545E+01	-1.869E+01	-1.305E+01	-9.526E+00
IX=	_		12	13	14	
IY=	5	-1.316E+00	-9.777E-01	-7.368E-01	-6.000E-01	-5.797E-01
IY=	4	-3.020E+00	-2.327E+00	-1.820E+00	-1.468E+00	-1.241E+00
IY=	3	-4.703E+00	-3.629E+00	-2.855E+00	-2.290E+00	-1.872E+00
IY=	2	-6.159E+00	-4.772E+00	-3.781E+00	-3.039E+00	-2.453E+00
IY=	1	-7.227E+00	-5.671E+00	-4.555E+00	-3.696E+00	-2.969E+00
IX=		16	17	18	19	20
FIEL	DV	ALUES OF THC	N			
IY=	5	1.804E+00	1.786E+00	1.764E+00	1.746E+00	1.734E+00
IY=	4	1.803E+00	1.785E+00	1.762E+00	1.743E+00	1.730E+00
IY=	3	1.802E+00	1.782E+00	1.758E+00	1.740E+00	1.722E+00
IY=	2	1.801E+00	1.780E+00	1.753E+00	1.736E+00	1.711E+00
IY=	1	1.800E+00	1.779E+00	1.751E+00	1.734E+00	1.711E+00
IX=		6	7	8	9	10
IY=	5	1.724E+00	1.717E+00	1.715E+00	1.715E+00	1.718E+00
IY=	4	1.718E+00	1.709E+00	1.709E+00	1.711E+00	1.716E+00
IY=	3	1.707E+00	1.707E+00	1.708E+00	1.709E+00	1.715E+00
IY=	2	1.707E+00	1.707E+00	1.708E+00	1.710E+00	1.715E+00
IY=	1	1.709E+00	1.708E+00	1.709E+00	1.710E+00	1.715E+00
IX=		11	12	13	14	15
IY=	5	1.721E+00	1.726E+00	1.730E+00	1.734E+00	1.737E+00

IY=	4	1.720E+00	1.725E+00	1.730E+00	1.734E+00	1.737E+00
IY=	3	1.720E+00	1.725E+00	1.730E+00	1.734E+00	1.737E+00
IY=	2	1.719E+00	1.724E+00	1.730E+00	1.734E+00	1.737E+00
IY=	1	1.719E+00	1.724E+00	1.729E+00	1.734E+00	1.737E+00
IX=		16	17	18	19	20
FIEL	D V	ALUES OF ELCN	[
IY=	5	1.384E+05	1.343E+05	1.303E+05	1.256E+05	1.206E+05
IY=	4	1.381E+05	1.341E+05	1.298E+05	1.246E+05	1.188E+05
TY =	3	1.377E+05	1.337E+05	1.289E+05	1.229E+05	1.129E+05
TY=	2	1.373E+05	1.333E+05	1.282E+05	1.211E+05	1.034E+05
	1	$1 371 E \pm 05$	1 3315+05	1 2785+05	1 205 - 05	1 0305+05
TT-	-	6	7	Q	0	10
	E	1 1445.05	1 0965.05	1 0678:05	1 0705.05	
1 X =	2	1.1446+05	1.0006+05	1.00/6+05	1.0706+05	1.0906+05
1Y=	4	1.0936+05	1.015E+05	1.0156+05	1.0296+05	1.0/26+05
IY=	3	9.992E+04	1.001E+05	1.005E+05	1.020E+05	1.0636+05
IY=	2	9.930E+04	1.001E+05	1.007E+05	1.023E+05	1.062E+05
IY=	1	1.019E+05	1.011E+05	1.015E+05	1.028E+05	1.064E+05
IX=		11	12	13	14	15
IY=	5	1.121E+05	1.156E+05	1.188E+05	1.205E+05	1.218E+05
IY=	4	1.112E+05	1.152E+05	1.187E+05	1.204E+05	1.218E+05
TY=	3	1.106E+05	1.147E+05	1.185E+05	1.203E+05	1.217E+05
TY=	2	1.104E+05	1.145E+05	1.185E+05	1.203E+05	1.217E+05
	1	1.104E+05	1 145F+05	1.184E+05	1 203E+05	1.217E+05
11- TV-	-	16	17	10	10	20
TV-		10	1 /	TO	1)	20
****	* * *	* * * * * * * * * * * * *	****	****	*****	****
**** TIME	*** ST	************* P= 1 SWEE	CP NO= 400		**************************************	**** 0= 1
**** TIME	*** ST	************* P= 1 SWEE	CP NO= 400	ZSLAB NO=	**************************************	**** 0= 1
**** TIME	*** ST	************* P= 1 SWEE	2P NO= 400	X*************************************	**************************************	**** 0= 1
**** TIME FLOW	*** ST FI	************** P= 1 SWEE ELD AT ITHYD=	EP NO= 400 1, IZ= 3,	ZSLAB NO= ISWEEP= 400	3 ITERN N , ISTEP=	***** IO= 1 1
**** TIME FLOW FIEL	*** ST FI D V	************** P= 1 SWEE ELD AT ITHYD= ALUES OF P1	EP NO= 400 = 1, IZ= 3,	ZSLAB NO= ISWEEP= 400	3 ITERN N), ISTEP=	***** IO= 1 1
**** TIME FLOW FIEL IY=	*** ST FI D V	*************** P= 1 SWEE ELD AT ITHYD= ALUES OF P1 4.721E+02	EP NO= 400 1, IZ= 3, 4.977E+02	ZSLAB NO= ISWEEP= 400 5.610E+02	3 ITERN N 3 ITERN N), ISTEP= 6.765E+02	***** IO= 1 1 8.391E+02
**** TIME FLOW FIEL IY= IY=	*** ST FI D V 5 4	*************** P= 1 SWEE ELD AT ITHYD= ALUES OF P1 4.721E+02 4.869E+02	EP NO= 400 = 1, IZ= 3, 4.977E+02 5.221E+02	ZSLAB NO= ISWEEP= 400 5.610E+02 6.091E+02	3 ITERN N 3 ITERN N 0, ISTEP= 6.765E+02 7.752E+02	***** 1 1 8.391E+02 1.029E+03
**** TIME FLOW FIEL IY= IY= IY=	*** ST FI D V 5 4 3	******************* P= 1 SWEE ELD AT ITHYD= ALUES OF P1 4.721E+02 4.869E+02 4.982E+02	<pre>EP NO= 400 = 1, IZ= 3, 4.977E+02 5.221E+02 5.534E+02</pre>	ZSLAB NO= ISWEEP= 400 5.610E+02 6.091E+02 6.938E+02	3 ITERN N 3 ITERN N 0, ISTEP= 6.765E+02 7.752E+02 9.477E+02	***** 10= 1 1 8.391E+02 1.029E+03 1.228E+03
**** TIME FLOW FIEL IY= IY= IY= IY=	*** ST FI D V 5 4 3 2	***************** P= 1 SWEE ELD AT ITHYD= ALUES OF P1 4.721E+02 4.869E+02 4.982E+02 5.139E+02	EP NO= 400 1, IZ= 3, 4.977E+02 5.221E+02 5.534E+02 5.994E+02	<pre>State NO= ISWEEP= 400 5.610E+02 6.091E+02 6.938E+02 8.184E+02</pre>	3 ITERN N 3 ITERN N 0, ISTEP= 6.765E+02 7.752E+02 9.477E+02 1.089E+03	***** 0= 1 1 8.391E+02 1.029E+03 1.228E+03 1.379E+02
**** TIME FLOW FIEL IY= IY= IY= IY=	*** ST FI D V 5 4 3 2 1	**************************************	EP NO= 400 1, IZ= 3, 4.977E+02 5.221E+02 5.534E+02 5.994E+02 6.696E+02	<pre>X************************************</pre>	3 ITERN N 3 ITERN N 6.765E+02 7.752E+02 9.477E+02 1.089E+03 1 402E+03	***** 10= 1 1 8.391E+02 1.029E+03 1.228E+03 1.379E+02 -1.828E+03
**** TIME FLOW FIEL IY= IY= IY= IY= IY=	*** ST D V 5 4 3 2 1	**************** P= 1 SWEE ELD AT ITHYD= ALUES OF P1 4.721E+02 4.869E+02 4.982E+02 5.139E+02 5.437E+02 6	EP NO= 400 1, IZ= 3, 4.977E+02 5.221E+02 5.534E+02 5.994E+02 6.696E+02 7	ZSLAB NO= ISWEEP= 400 5.610E+02 6.091E+02 6.938E+02 8.184E+02 1.015E+03	3 ITERN N 3 ITERN N 6.765E+02 7.752E+02 9.477E+02 1.089E+03 1.402E+03	***** 10= 1 1 8.391E+02 1.029E+03 1.228E+03 1.379E+02 -1.828E+03 10
**** TIME FLOW FIEL IY= IY= IY= IY= IY= IX=	*** FI D V 5 4 3 2 1	******************* P= 1 SWEE ELD AT ITHYD= ALUES OF P1 4.721E+02 4.869E+02 4.982E+02 5.139E+02 5.437E+02 6 0.004E+02	EP NO= 400 1, IZ= 3, 4.977E+02 5.221E+02 5.534E+02 5.994E+02 6.696E+02 7 1.002E+02	ZSLAB NO= ISWEEP= 400 5.610E+02 6.091E+02 6.938E+02 8.184E+02 1.015E+03 8	3 ITERN N 3 ITERN N 6.765E+02 7.752E+02 9.477E+02 1.089E+03 1.402E+03 9 7.660E+02	***** 10= 1 1 8.391E+02 1.029E+03 1.228E+03 1.379E+02 -1.828E+03 10 5.230E+02
**** TIME FLOW FIEL IY= IY= IY= IY= IX= IX=	*** ST FI D V 5 4 3 2 1 5	*********************** P= 1 SWEE ELD AT ITHYD= ALUES OF P1 4.721E+02 4.869E+02 4.982E+02 5.139E+02 5.437E+02 6 9.904E+02 1.224E+02	<pre>EP NO= 400 = 1, IZ= 3, 4.977E+02 5.221E+02 5.534E+02 5.994E+02 6.696E+02 7 1.003E+03 1.003E+03</pre>	<pre>ISWEEP= 400 5.610E+02 6.091E+02 6.938E+02 8.184E+02 1.015E+03 8 9.141E+02 0.044E+02</pre>	3 ITERN N 3 ITERN N 0, ISTEP= 6.765E+02 7.752E+02 9.477E+02 1.089E+03 1.402E+03 9 7.660E+02	***** 10= 1 1 8.391E+02 1.029E+03 1.228E+03 1.379E+02 -1.828E+03 10 5.230E+02 6.444E+02
**** TIME FLOW FIEL IY= IY= IY= IY= IX= IY= IY=	* * * ST FI D V 5 4 3 2 1 5 4 3	*************** P= 1 SWEE ELD AT ITHYD= ALUES OF P1 4.721E+02 4.869E+02 4.982E+02 5.139E+02 5.437E+02 6 9.904E+02 1.324E+03	<pre>x************************************</pre>	<pre>ISWEEP= 400 5.610E+02 6.091E+02 6.938E+02 8.184E+02 1.015E+03 8 9.141E+02 9.844E+02 1.1220</pre>	3 ITERN N 3 ITERN N 0, ISTEP= 6.765E+02 7.752E+02 9.477E+02 1.089E+03 1.402E+03 9 7.660E+02 8.726E+02	***** 10= 1 1 8.391E+02 1.029E+03 1.228E+03 1.379E+02 -1.828E+03 10 5.230E+02 6.444E+02 7.460E+02
**** TIME FLOW FIEL IY= IY= IY= IY= IY= IY= IY= IY= IY=	*** ST FI D V 5 4 3 2 1 5 4 3	*************** P= 1 SWEE ELD AT ITHYD= ALUES OF P1 4.721E+02 4.869E+02 4.982E+02 5.139E+02 5.437E+02 6 9.904E+02 1.324E+03 1.609E+03	<pre>x************************************</pre>	<pre>State NO= ISWEEP= 400 5.610E+02 6.091E+02 6.938E+02 8.184E+02 1.015E+03 8 9.141E+02 9.844E+02 1.113E+03</pre>	3 ITERN N 3 ITERN N 6.765E+02 7.752E+02 9.477E+02 1.089E+03 1.402E+03 9 7.660E+02 8.726E+02 9.652E+02	***** 10= 1 1 8.391E+02 1.029E+03 1.228E+03 1.379E+02 -1.828E+03 10 5.230E+02 6.444E+02 7.468E+02 7.468E+02
**** TIME FLOW FIEL IY= IY= IY= IY= IY= IY= IY= IY= IY= IY=	*** ST FI D V 5 4 3 2 1 5 4 3 2	************** P= 1 SWEE ELD AT ITHYD= ALUES OF P1 4.721E+02 4.869E+02 4.982E+02 5.139E+02 5.139E+02 5.437E+02 6 9.904E+02 1.324E+03 1.609E+03 -4.660E+02	<pre>x************************************</pre>	<pre>State NO= ISWEEP= 400 5.610E+02 6.091E+02 6.938E+02 8.184E+02 1.015E+03 8 9.141E+02 9.844E+02 1.113E+03 -2.410E+02</pre>	3 ITERN N 3 ITERN N 3 ITERN N 4 765E+02 7.752E+02 9.477E+02 1.089E+03 1.402E+03 9 7.660E+02 8.726E+02 9.652E+02 5.570E+02	***** IO= 1 1 8.391E+02 1.029E+03 1.228E+03 1.379E+02 -1.828E+03 10 5.230E+02 6.444E+02 7.468E+02 7.544E+02
**** TIME FLOW FIEL IY= IY= IY= IY= IY= IY= IY= IY= IY= IY=	*** ST FI 5 4 3 2 1 5 4 3 2 1	<pre>*************** P= 1 SWEE ELD AT ITHYD= ALUES OF P1 4.721E+02 4.869E+02 4.982E+02 5.139E+02 5.437E+02 6 9.904E+02 1.324E+03 1.609E+03 -4.660E+02 -1.494E+03</pre>	EP NO= 400 1, IZ= 3, 4.977E+02 5.221E+02 5.534E+02 5.994E+02 6.696E+02 7 1.003E+03 1.129E+03 1.364E+03 -3.794E+02 -8.076E+02	<pre>State is a state is a state</pre>	3 ITERN N 3 ITERN N 3 ITERN N 3 . ISTEP= 6.765E+02 7.752E+02 9.477E+02 1.089E+03 1.402E+03 9 7.660E+02 8.726E+02 9.652E+02 9.652E+02 5.570E+02 2.615E+02	***** IO= 1 1 8.391E+02 1.029E+03 1.228E+03 1.379E+02 -1.828E+03 10 5.230E+02 6.444E+02 7.468E+02 7.544E+02 6.713E+02
**** TIME FLOW FIEL IY= IY= IY= IY= IY= IY= IY= IY= IY= IY=	*** ST DV 5 4 3 2 1 5 4 3 2 1	<pre>*************** P= 1 SWEE ELD AT ITHYD= ALUES OF P1 4.721E+02 4.869E+02 4.982E+02 5.139E+02 5.437E+02 6 9.904E+02 1.324E+03 1.609E+03 -4.660E+02 -1.494E+03 11</pre>	<pre>x************************************</pre>	ZSLAB NO= ISWEEP= 400 5.610E+02 6.091E+02 6.938E+02 8.184E+02 1.015E+03 8 9.141E+02 9.844E+02 1.113E+03 -2.410E+02 -3.606E+02 13	3 ITERN N 3 ITERN N 3 ITERN N 3 ITERN N 3 ITERN N 3 ITERN N 4 765E+02 7 752E+02 9 477E+02 1 089E+03 1 402E+03 9 7 .660E+02 8 .726E+02 9 .652E+02 5 .570E+02 2 .615E+02 14	***** iO= 1 1 8.391E+02 1.029E+03 1.228E+03 1.379E+02 -1.828E+03 10 5.230E+02 6.444E+02 7.468E+02 7.544E+02 6.713E+02 15
**** TIME FLOW FIEL IY= IY= IY= IY= IY= IY= IY= IY= IY= IY=	*** ST FI 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5	<pre>*************** P= 1 SWEE ELD AT ITHYD= ALUES OF P1 4.721E+02 4.869E+02 4.982E+02 5.139E+02 5.437E+02 6 9.904E+02 1.324E+03 1.609E+03 -4.660E+02 -1.494E+03 11 4.283E+02</pre>	EP NO= 400 1, IZ= 3, 4.977E+02 5.221E+02 5.534E+02 5.994E+02 6.696E+02 7 1.003E+03 1.129E+03 1.364E+03 -3.794E+02 -8.076E+02 12 4.118E+02	ZSLAB NO= ISWEEP= 400 5.610E+02 6.091E+02 6.938E+02 8.184E+02 1.015E+03 8 9.141E+02 9.844E+02 1.113E+03 -2.410E+02 -3.606E+02 13 4.199E+02	3 ITERN N 3 ITERN N 3 ITERN N 3 ITERN N 3 ITERN N 3 ITERN N 4 765E+02 7 752E+02 9 477E+02 1 089E+03 1 402E+03 9 7.660E+02 8 726E+02 9 652E+02 9 652E+02 5 570E+02 2 615E+02 14 4 315E+02	***** 10= 1 1 8.391E+02 1.029E+03 1.228E+03 1.379E+02 -1.828E+03 10 5.230E+02 6.444E+02 7.468E+02 7.544E+02 6.713E+02 15 4.401E+02
**** TIME FLOW FIEL IY= IY= IY= IY= IY= IY= IY= IY= IY= IY=	*** ST FI 5 4 3 2 1 5 4 3 2 1 5 4 3 2	<pre>**************** P= 1 SWEE ELD AT ITHYD= ALUES OF P1 4.721E+02 4.869E+02 4.982E+02 5.139E+02 5.437E+02 6 9.904E+02 1.324E+03 1.609E+03 -4.660E+02 -1.494E+03 11 4.283E+02 5.043E+02</pre>	EP NO= 400 = 1, IZ= 3, 4.977E+02 5.221E+02 5.534E+02 5.994E+02 6.696E+02 7 1.003E+03 1.129E+03 1.364E+03 -3.794E+02 -8.076E+02 12 4.118E+02 4.581E+02	ZSLAB NO= ISWEEP= 400 5.610E+02 6.091E+02 6.938E+02 8.184E+02 1.015E+03 8 9.141E+02 9.844E+02 1.113E+03 -2.410E+02 -3.606E+02 13 4.199E+02 4.478E+02	3 ITERN N 3 ITERN N 3 ITERN N 3 ITERN N 3 ITERN N 3 ITERN N 4 765E+02 7 752E+02 9 477E+02 1 089E+03 1 402E+03 9 7 .660E+02 8 .726E+02 9 .652E+02 5 .570E+02 2 .615E+02 14 4 .315E+02 4 .486E+02	***** 10= 1 1 8.391E+02 1.029E+03 1.228E+03 1.379E+02 -1.828E+03 10 5.230E+02 6.444E+02 7.544E+02 7.544E+02 6.713E+02 15 4.401E+02 4.516E+02
**** TIME FLOW FIEL IY= IY= IY= IY= IY= IY= IY= IY= IY= IY=	*** ST FI 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3	<pre>**************** P= 1 SWEE ELD AT ITHYD= ALUES OF P1 4.721E+02 4.869E+02 4.982E+02 5.139E+02 5.437E+02 6 9.904E+02 1.324E+03 1.609E+03 -4.660E+02 -1.494E+03 11 4.283E+02 5.043E+02 5.656E+02</pre>	<pre>x************************************</pre>	<pre>State NO= ISWEEP= 400 5.610E+02 6.091E+02 6.938E+02 8.184E+02 1.015E+03 8 9.141E+02 9.844E+02 1.113E+03 -2.410E+02 -3.606E+02 13 4.199E+02 4.478E+02 4.675E+02</pre>	3 ITERN N 3 ITERN N 3 ITERN N 3 ITERN N 3 . 1 STEP= 6 . 765E+02 7 . 752E+02 9 . 477E+02 1 . 089E+03 1 . 402E+03 9 7 . 660E+02 8 . 726E+02 9 . 652E+02 5 . 570E+02 2 . 615E+02 14 4 . 315E+02 4 . 486E+02 4 . 609E+02	***** IO= 1 1 8.391E+02 1.029E+03 1.228E+03 1.379E+02 -1.828E+03 10 5.230E+02 6.444E+02 7.468E+02 7.544E+02 6.713E+02 15 4.401E+02 4.516E+02 4.604E+02
**** TIME FLOW FIEL IY= IY= IY= IY= IY= IY= IY= IY= IY= IY=	*** ST FI 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2	<pre>***************** P= 1 SWEE ELD AT ITHYD= ALUES OF P1 4.721E+02 4.869E+02 4.982E+02 5.139E+02 5.437E+02 6 9.904E+02 1.324E+03 1.609E+03 -4.660E+02 -1.494E+03 11 4.283E+02 5.043E+02 5.656E+02 6.219E+02</pre>	<pre>x************************************</pre>	<pre>State NO= ISWEEP= 400 5.610E+02 6.091E+02 6.938E+02 8.184E+02 1.015E+03 8 9.141E+02 9.844E+02 1.113E+03 -2.410E+02 -3.606E+02 13 4.199E+02 4.478E+02 4.675E+02 4.897E+02</pre>	3 ITERN N 3 ITERN N 3 ITERN N 3 ITERN N 3 . 152 3 . 10892+02 3 . 4022+03 9 . 4022+03 9 . 4022+03 9 . 4022+03 9 . 6602+02 8 . 7262+02 9 . 65222+02 5 . 5702+02 2 . 6152+02 14 4 . 3152+02 4 . 3152+02 4 . 6092+02 4 . 7432+02	***** 10= 1 1 8.391E+02 1.029E+03 1.228E+03 1.379E+02 -1.828E+03 10 5.230E+02 6.444E+02 7.544E+02 7.544E+02 6.713E+02 15 4.401E+02 4.516E+02 4.604E+02 4.697E+02
**** TIME FLOW FIEL IY= IY= IY= IY= IY= IY= IY= IY= IY= IY=	*** ST DV 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1	<pre>**************** P= 1 SWEE ELD AT ITHYD= ALUES OF P1 4.721E+02 4.869E+02 4.982E+02 5.139E+02 5.437E+02 6 9.904E+02 1.324E+03 1.609E+03 -4.660E+02 -1.494E+03 11 4.283E+02 5.043E+02 5.043E+02 5.656E+02 6.219E+02 7.331E+02</pre>	<pre>x************************************</pre>	<pre>State NO= ISWEEP= 400 S.610E+02 6.091E+02 6.938E+02 8.184E+02 1.015E+03 8 9.141E+02 9.844E+02 1.113E+03 -2.410E+02 -3.606E+02 13 4.199E+02 4.478E+02 4.675E+02 4.897E+02 5.285E+02</pre>	3 ITERN N 3 ITERN N 3 ITERN N 3 ITERN N 3 . 15EP= 6.765E+02 7.752E+02 9.477E+02 1.089E+03 1.402E+03 9 7.660E+02 8.726E+02 9.652E+02 5.570E+02 2.615E+02 14 4.315E+02 4.486E+02 4.609E+02 4.743E+02 4.958E+02	***** IO= 1 1 8.391E+02 1.029E+03 1.228E+03 1.379E+02 -1.828E+03 10 5.230E+02 6.444E+02 7.544E+02 7.544E+02 6.713E+02 15 4.401E+02 4.516E+02 4.604E+02 4.697E+02 4.833E+02

A 3-15

FIELI	o v	ALUES OF U1				
IY=	5	3.384E-01	3.381E-01	3.379E-01	3.378E-01	3.381E-01
IY=	4	3.384E-01	3.381E-01	3.378E-01	3.377E-01	3.380E-01
IY=	3	3.383E-01	3.380E-01	3.377E-01	3.375E-01	3.387E-01
TY=	2	3.383E-01	3.380E-01	3.377E-01	3.375E-01	3.387E-01
TV-	1	3 3835-01	3 380E-01	3 377E - 01	3 376E-01	3 38/F-01
11- TV-	-	5.505E 01	7	8 9.9775 01	0	10
	c	2 2005 01		2 4027 01	2 2 41 4 m 0 1	
1 Y =	2	3.3896-01	3.3946-01	3.403E-01	3.4146-01	3.41/E-01
IY=	4	3.393E-01	3.3956-01	3.402E-01	3.4126-01	3.418E-01
IY=	3	3.393E-01	3.395E-01	3.401E-01	3.411E-01	3.419E-01
IY=	2	9.385E-01	-1.050E+00	3.401E-01	3.412E-01	3.420E-01
IY=	1	-1.187E+01	-8.045E+00	3.406E-01	3.414E-01	3.421E-01
IX=		11	12	13	14	15
IY=	5	3.416E-01	3.413E-01	3.411E-01	3.409E-01	3.408E-01
 TV=	4	3 416E-01	3 413E-01	3 411E - 01	3,409E-01	3.408E-01
11- TV-	2	3.410001	3 /1/F-01	3 /11 =_01	3 /095_01	3 4085-01
11 TV	ר ר			2.411E-01	2 409E-01	3.4000-01
1 X ==	2	3.41/6-01	3.4146-01	3.411E-01	3.4096-01	3.4006-01
1 Y =	T	3.418E-01	3.414E-01	3.411E-01	3.409E-01	3.408E-01
IX=		16	17	18	19	20
FIELI	DV	VALUES OF V1				
IY=	4	8.117E-05	1.257E-04	2.106E-04	3.563E-04	5.551E-04
IY=	3	1.282E-04	1.911E-04	2.996E-04	4.643E-04	6.504E-04
IY=	2	1.241E-04	1.758E-04	2.442E-04	2.920E-04	3.218E-04
TY=	1	7.552E-05	1.031E-04	1.294E-04	1.212E-04	1.212E-04
 TX=	_	6	7	8	9	10
TV	Λ	5 4565-04	_1 686F_04	_1 3395_04	$1^{0}21E-04$	3 4305-04
	2				1 6525 05	2 176 = 0.4
	່ ງ	-1.0006-04				1 7505 0 <i>1</i>
1 Y =	2	-1.976E-04	-2.8918-04	-3.94/8-04	5.8146-05	1./305-04
IY =	Т	-1.1116+01	-1.041E+01	-6.111E+00	2.4896-04	1.8016-04
IX=		11	12	13	14	15
IY=	4	1.903E-04	9.784E-05	5.246E-05	3.030E-05	2.018E-05
IY=	3	1.830E-04	1.207E-04	7.455E-05	4.639E-05	3.198E-05
IY=	2	1.538E-04	1.090E-04	7.111E-05	4.584E-05	3.218E-05
IY=	1	1.165E-04	7.445E-05	4.693E-05	2.989E-05	2.090E-05
TX=		16	17	18	19	20
FIEL	י מ	VALUES OF W1	_ /			
TV-	с, Б	1 0765-03	1 /065-03	1 0/85-03	2 7305-03	3 6778-03
	А			1 0200 02	2.7306-03	2 717E_03
11=	4	9.9256-04	1.3026-03	1.0296-03	2.0426-03	3.7176-03
IY =	3	9.326E-04	1.234E-03	1./66E-03	2.6256-03	3.8266-03
IY=	2	8.693E-04	1.150E-03	1.633E-03	2.368E-03	3.4906-03
IY=	1	7.855E-04	1.034E-03	1.459E-03	2.090E-03	3.125E-03
IX=		6	7	8	9	10
IY=	5	4.457E-03	4.668E-03	4.963E-03	4.723E-03	3.630E-03
IY=	4	4.503E-03	3.887E-03	4.315E-03	4.448E-03	3.730E-03
IY=	3	3.594E-03	3.115E-03	3.602E-03	4.160E-03	3.773E-03
IY=	2	1.550E-03	1.312E-03	1.700E-03	4.219E-03	3.866E-03
$\overline{I} \overline{Y} =$	1	1.642E-03	1.693E-03	2.264E-03	4.568E-03	4.000E-03
 T Y	-	11	12	12	14	15
TV-	Ę	2 /02E 02	1 6795 03	1 0605 03	17 7 25/10 AA	5 6268-04
T T ==	5	2.4036-03	1.0406-03	T.000E-03	1.3346-04	J.0206-04

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IY=	4	2.485E-03	1.595E-03	1.035E-03	7.077E-04	5.401E-04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IY=	3	2.523E-03	1.602E-03	1.025E-03	6.928E-04	5.248E-04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IY=	2	2.574E-03	1.617E-03	1.021E-03	6.810E-04	5.113E-04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IY=	1	2.603E-03	1.608E-03	1.002E-03	6.604E-04	4.927E-04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IX=		16	17	18	19	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	FIELI	D V.	ALUES OF ENU	L			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IY=	5	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IY=	4	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IY=	3	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IY=	2	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IY=	1	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IX=		6	7	8	9	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IY=	5	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IY=	4	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IY=	3	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IY=	2	3.570E-03	3.570E-03	3.570E-03	1.000E+06	1.000E+06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IY=	1	3.570E-03	3.570E-03	3.570E-03	1.000E+06	1.000E+06
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IX=	_	11	12	13	14	15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TY =	5	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TY =	4	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TY=	3	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TY =	2	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TV=	1	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
Interform the second second system of the s	TX=	-	16	17	18	19	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	FTEL	οv	ALUES OF H1	- /	20		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TY =	์ ร	-2.887E+02	-2.549E+02	-2.160E+02	-1.728E+02	-1.283E+02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TY=	4	-2.874E+02	-2.528E+02	-2.122E+02	-1.657E+02	-1.165E+02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TY =	3	-2.855E+02	-2.495E+02	-2.059E+02	-1.536E+02	-9.461E+01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TY=	2	-2.836E+02	-2.462E+02	-1.996E+02	-1.409E+02	-6.692E+01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TV=	1	-2.825E+02	-2.444E+02	-1.963E+02	-1.358E+02	-6.259E+01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TX=	-	6	7	8	9	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TV=	5	-8 866E+01	-6.104E+01	-4.847E+01	-4.659E+01	-5.301E+01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TY =	4	-7.245E+01	-4.486E+01	-3.572E+01	-3.696E+01	-4.716E+01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TV=	- २	-4.114E+01	-2.369E+01	-1.940E+01	-2.720E+01	-4.127E+01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TY =	2	2.142E+01	2.108E+01	1.566E+01	-1.597E+01	-3.648E+01
IX=1112131415IY=5 $-6.584E+01$ $-8.127E+01$ $-9.741E+01$ $-1.121E+02$ $-1.244E+02$ IY=4 $-6.241E+01$ $-7.955E+01$ $-9.653E+01$ $-1.116E+02$ $-1.241E+02$ IY=3 $-5.856E+01$ $-7.749E+01$ $-9.539E+01$ $-1.110E+02$ $-1.237E+02$ IY=2 $-5.573E+01$ $-7.596E+01$ $-9.450E+01$ $-1.104E+02$ $-1.233E+02$ IY=1 $-5.471E+01$ $-7.531E+01$ $-9.408E+01$ $-1.101E+02$ $-1.231E+02$ IX=1617181920FIELDVALUES OF TMP1 17 18 1920IY=3.113E+02 $3.449E+02$ $3.836E+02$ $4.266E+02$ $4.709E+02$ IY=3.125E+02 $3.469E+02$ $3.874E+02$ $4.336E+02$ $4.826E+02$ IY=3.144E+02 $3.502E+02$ $3.937E+02$ $4.456E+02$ $5.044E+02$ IY=2 $3.163E+02$ $3.535E+02$ $3.999E+02$ $4.583E+02$ $5.319E+02$ IY=1 $3.175E+02$ $3.554E+02$ $4.032E+02$ $4.634E+02$ $5.362E+02$	TY =	1	1.123E+01	1.360E+01	1.069E+01	-1.524E+01	-3.533E+01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 TX=	-	11	12	13	14	15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TV =	5	-6584E+01	-8.127E+01	-9.741E+01	-1.121E+02	-1.244E+02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TV =	Δ	-6.241E+01	-7.955E+01	-9.653E+01	-1.116E+02	-1.241E+02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TV=	2	-5.856E+01	-7 749E+01	-9539E+01	-1.110E+02	-1.237E+02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TY =	2	-5.573E+01	-7.596E+01	-9.450E+01	-1.104E+02	-1.233E+02
IX=1617181920FIELD VALUES OF TMP1181920IY= $3.113E+02$ $3.449E+02$ $3.836E+02$ $4.266E+02$ $4.709E+02$ IY= 4 $3.125E+02$ $3.469E+02$ $3.874E+02$ $4.336E+02$ $4.826E+02$ IY= 3 $3.144E+02$ $3.502E+02$ $3.937E+02$ $4.456E+02$ $5.044E+02$ IY= 2 $3.163E+02$ $3.535E+02$ $3.999E+02$ $4.583E+02$ $5.319E+02$ IY= 1 $3.175E+02$ $3.554E+02$ $4.032E+02$ $4.634E+02$ $5.362E+02$	TV=	1	-5.471F+01	-7.5300+01	-9 408E+01	-1.101E+02	-1.231E+02
FIELD VALUES OF TMP1 IY= 5 3.113E+02 3.449E+02 3.836E+02 4.266E+02 4.709E+02 IY= 4 3.125E+02 3.469E+02 3.874E+02 4.336E+02 4.826E+02 IY= 3 3.144E+02 3.502E+02 3.937E+02 4.456E+02 5.044E+02 IY= 2 3.163E+02 3.535E+02 3.999E+02 4.583E+02 5.319E+02 IY= 1 3.175E+02 3.554E+02 4.032E+02 4.634E+02 5.362E+02	TX=	-	16	17	18	19	20
IY = 5 $3.113E+02$ $3.449E+02$ $3.836E+02$ $4.266E+02$ $4.709E+02$ $IY = 4$ $3.125E+02$ $3.469E+02$ $3.874E+02$ $4.336E+02$ $4.826E+02$ $IY = 3$ $3.144E+02$ $3.502E+02$ $3.937E+02$ $4.456E+02$ $5.044E+02$ $IY = 2$ $3.163E+02$ $3.535E+02$ $3.999E+02$ $4.583E+02$ $5.319E+02$ $IY = 1$ $3.175E+02$ $3.554E+02$ $4.032E+02$ $4.634E+02$ $5.362E+02$	FTEL	ъv	ALUES OF THE	51 51	10	17	20
IY=4 $3.125E+02$ $3.469E+02$ $3.874E+02$ $4.336E+02$ $4.826E+02$ IY= $3.144E+02$ $3.502E+02$ $3.937E+02$ $4.456E+02$ $5.044E+02$ IY= $2.163E+02$ $3.535E+02$ $3.999E+02$ $4.583E+02$ $5.319E+02$ IY= $3.175E+02$ $3.554E+02$ $4.032E+02$ $4.634E+02$ $5.362E+02$	TY =	ั ร`	3.113E+02	- 3,449E+02	3.836E+02	4.266E+02	4.709E+02
IY=3 $3.144E+02$ $3.502E+02$ $3.937E+02$ $4.456E+02$ $5.044E+02$ IY=2 $3.163E+02$ $3.535E+02$ $3.999E+02$ $4.583E+02$ $5.319E+02$ IY=1 $3.175E+02$ $3.554E+02$ $4.032E+02$ $4.634E+02$ $5.362E+02$	IY =	4	3.125E+02	3.469E+02	3.874E+02	4.336E+02	4.826E+02
IY= 2 3.163E+02 3.535E+02 3.999E+02 4.583E+02 5.319E+02 IY= 1 3.175E+02 3.554E+02 4.032E+02 4.634E+02 5.362E+02	IY=	3	3.144E+02	3.502E+02	3.937E+02	4.456E+02	5.044E+02
IY = 1 3.175E+02 3.554E+02 4.032E+02 4.634E+02 5.362E+02	IY =	2	3.163E+02	3.535E+02	3.999E+02	4.583E+02	5.319E+02
	IY=	1	3.175E+02	3.554E+02	4.032E+02	4.634E+02	5.362E+02

IX=		6	7	8	9	10
IY=	5	5.103E+02	5.378E+02	5.503E+02	5.521E+02	5.458E+02
IY=	4	5.264E+02	5.539E+02	5.630E+02	5.617E+02	5.516E+02
IY=	3	5.576E+02	5.749E+02	5.792E+02	5.714E+02	5.574E+02
IY=	2	6.198E+02	6.195E+02	6.141E+02	5.826E+02	5.622E+02
IY=	1	6.097E+02	6.120E+02	6.091E+02	5.833E+02	5.633E+02
IX=		11	12	13	14	15
IY=	5	5.330E+02	5.176E+02	5.016E+02	4.870E+02	4.747E+02
IY=	4	5.364E+02	5.193E+02	5.024E+02	4.874E+02	4.750E+02
IY=	3	5.402E+02	5.214E+02	5.036E+02	4.881E+02	4.755E+02
IY=	2	5.430E+02	5.229E+02	5.045E+02	4.886E+02	4.758E+02
IY=	1	5.441E+02	5.236E+02	5.049E+02	4.889E+02	4.760E+02
IX=		16	17	18	19	20
FIELI	D VAI	LUES OF DELH				
IY=	5	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	3	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IX=		6	7	8	9	10
IY=	5	0.000E+00	0.000E+00	1.202E+01	1.952E+01	0.000E+00
IY=	4	0.000E+00	2.466E+01	6.014E+01	5.592E+01	1.761E+01
IY=	3	3.616E+01	1.038E+02	1.217E+02	9.321E+01	4.015E+01
IY=	2	2.662E+02	2.701E+02	2.532E+02	1.358E+02	5.844E+01
IY=	ī	2.360E+02	2.464E+02	2.366E+02	1.390E+02	6.288E+01
IX=	_	11	12	13	14	15
IY=	5	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	3	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	ī	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IX=	_	16	17	18	19	20
FIEL	D VAI	LUES OF EPOT				
IY=	5	1.792E-04	2.035E-04	2.245E-04	2.381E-04	2.397E-04
IY=	4	1.847E-04	2.116E-04	2.365E-04	2.546E-04	2.586E-04
IY=	3	1.944E-04	2.262E-04	2.594E-04	2.880E-04	2.992E-04
IY=	2	2.051E-04	2.434E-04	2.886E-04	3.352E-04	3.638E-04
IY=	1	2.125E-04	2.559E-04	3.121E-04	3.791E-04	4.363E-04
IX=		6	7	8	9	10
IY=	5	2.264E-04	2.016E-04	1.731E-04	1.450E-04	1.188E-04
IY=	4	2.424E-04	2.111E-04	1.785E-04	1.482E-04	1.206E-04
IY=	3	2.775E-04	2.306E-04	1.895E-04	1.546E-04	1.243E-04
IY=	2	3.386E-04	2.628E-04	2.073E-04	1.641E-04	1.293E-04
IY=	1	4.160E-04	3.148E-04	2.322E-04	1.748E-04	1.339E-04
IX=		11	12	13	14	15
IY=	5	9.493E-05	7.358E-05	5.456E-05	3.765E-05	2.261E-05
IY=	4	9.601E-05	7.420E-05	5.492E-05	3.786E-05	2.275E-05
IY=	3	9.806E-05	7.533E-05	5.555E-05	3.822E-05	2.298E-05
IY=	2	1.006E-04	7.665E-05	5.625E-05	3.861E-05	2.323E-05

A 3 - 18

IY=	1	1.027E-04	7.762E-05	5.672E-05	3.886E-05	2.339E-05
IX=		16	17	18	19	20
FIEL	DV	ALUES OF JX				
IY=	5	-1.773E+01	-1.536E+01	-1.145E+01	-4.924E+00	3.576E+00
IY=	4	-1.905E+01	-1.753E+01	-1.416E+01	-7.072E+00	3.646E+00
IY=	3	-2.152E+01	-2.192E+01	-2.017E+01	-1.260E+01	2.821E+00
IY=	2	-2.455E+01	-2.800E+01	-2.977E+01	-2.358E+01	-1.924E+00
IY=	1	-2.690E+01	-3.335E+01	-3.986E+01	-3.864E+01	-1.176E+01
IX=		6	7	8	9	10
IY=	5	1.137E+01	1.549E+01	1.616E+01	1.547E+01	1.439E+01
IY=	4	1.392E+01	1.821E+01	1.763E+01	1.623E+01	1.483E+01
IY=	3	1.933E+01	2.427E+01	2.076E+01	1.796E+01	1.589E+01
IY=	2	2.613E+01	3.349E+01	2.553E+01	2.090E+01	1.766E+01
IY=	1	3.173E+01	4.748E+01	3.646E+01	2.636E+01	2.005E+01
 T X =	-	11	12	13	14	15
TV =	5	1.319E+01	1.198E+01	1.081E+01	9.724E+00	8.910E+00
	4	1.348E+01	1.217E+01	1.092E+01	9.785E+00	8,936E+00
	z	1 413E+01	1.255E+01	1 114E+01	9.898E+00	8.981E+00
	2	1.512F+01	1 3085+01	1 1/1 = 101	1 003E+01	9.032E+00
	1	1 6155+01	1 35/F+01	1 1625+01	$1 013F \pm 01$	9.0522+00
TT=	T	16	17	1020-01	10	20
TV=		TO DE TO	11	10	19	20
TV-		1 022E,00	2 7/55400	3 9645+00	5 2/38+00	5 7938+00
$II = IV_{-}$	Э И	1.933E+00	2.745E+00 7 690E+00	1 1/6E+00	1 577E+00	1 810F+00
	4	5.302E+00	1 0725-01	1 6000,01	2.5776+01	2 1575+01
11 = 7	っ っ	7.100E+00		1 715 - 01		J.157E+01
1 Y =	4	0.300E+00	9.9096+00	7 6528.00	1 271 - 01	4.033E+01 2 127E+01
1 Y =	T	2.3016+00	4.2106+00	1.0526+00	1.3/16+01	10
1X=	-	0	2 7205.00		9 0 0 2 0 m 0 1	
1Y =	5	4./61E+UU	2.7296+00	1.5148+00		5.205E-01
1Y=	4	1.4926+01	8.1626+00	4.5356+00		1.3006+00
IY=	3	2.654E+01	1.3936+01	/./U4E+UU	4.35/6+00	
IY =	2	3.622E+01	2.1/9E+01	1.1118+01	5.5008+00	2.0946+00
IY=	1	1.984E+01	1.330E+01	6.430E+00	2.911E+00	1.2956+00
IX=	_	11	12	13		15
IY=	5	3.146E-01	1.838E-01	1.0/4E-01	6.428E-02	4.312E-U2
IY=	4	9.103E-01	5.188E-01	2.958E-01	1./38E-01	1.153E-01
IY=	3	1.338E+00	7.273E-01	3.977E-01	2.267E-01	1.476E-01
IY=	2	1.338E+00	6.784E-01	3.526E-01	1.941E-01	1.238E-01
IY=	1	5.954E-01	2.861E-01	1.433E-01	7.699E-02	4.843E-02
IX=		16	17	18	19	20
FIEL	D	VALUES OF JZ				
IY=	5	1.188E+01	1.374E+01	1.582E+01	1.736E+01	1.727E+01
IY=	4	1.295E+01	1.549E+01	1.876E+01	2.180E+01	2.248E+01
IY=	3	1.495E+01	1.896E+01	2.515E+01	3.252E+01	3.640E+01
IY=	2	1.740E+01	2.365E+01	3.504E+01	5.225E+01	6.733E+01
IY=	1	1.927E+01	2.766E+01	4.513E+01	7.804E+01	1.252E+02
IX=		6	7	8	9	10
IY=	5	1.473E+01	1.088E+01	8.249E+00	6.658E+00	5.614E+00
IY=	4	1.830E+01	1.126E+01	8.064E+00	6.549E+00	5.599E+00

IY=	3	2.821E+01	1.176E+01	7.963E+00	6.717E+00	5.793E+00
IY=	2	5.318E+01	1.291E+01	9.490E+00	7.947E+00	6.456E+00
IY=	1	1.128E+02	4.906E+01	2.180E+01	1.178E+01	7.656E+00
IX=		11	12	13	14	15
IY=	5	4.864E+00	4.290E+00	3.845E+00	3.481E+00	3.173E+00
IY=	4	4.882E+00	4.311E+00	3.860E+00	3.491E+00	3.180E+00
IY=	3	5.012E+00	4.386E+00	3.899E+00	3.513E+00	3.193E+00
IY=	2	5.316E+00	4.521E+00	3.959E+00	3.541E+00	3.209E+00
IY=	1	5.708E+00	4.658E+00	4.010E+00	3.562E+00	3.220E+00
IX=		16	17	18	19	20
FIEL	D V.	ALUES OF BX				
IY=	5	2.247E+00	3.151E+00	4.252E+00	5.319E+00	5.899E+00
IY=	4	3.113E+00	4.605E+00	6.572E+00	8.708E+00	1.005E+01
IY=	3	3.842E+00	5.940E+00	8.992E+00	1.279E+01	1.563E+01
IY=	2	4.252E+00	6.770E+00	1.077E+01	1.639E+01	2.126E+01
IY=	1	4.271E+00	6.835E+00	1.106E+01	1.739E+01	2.332E+01
IX=		6	7	8	9	10
IY=	5	5.593E+00	4.553E+00	3.368E+00	2.390E+00	1.671E+00
IY=	4	9.519E+00	7.389E+00	5.122E+00	3.426E+00	2.279E+00
IY=	3	1.499E+01	1.119E+01	7.262E+00	4.558E+00	2.880E+00
IY=	2	2.077E+01	1.504E+01	9.240E+00	5.494E+00	3.334E+00
IY=	1	2.297E+01	1.639E+01	9.860E+00	5.770E+00	3.477E+00
IX=		11	12	13	14	15
IY=	5	1.167E+00	8.217E-01	5.882E-01	4.316E-01	3.301E-01
IY=	4	1.532E+00	1.050E+00	7.393E-01	5.359E-01	4.015E-01
IY=	3	1.865E+00	1.249E+00	8.663E-01	6.215E-01	4.596E-01
IY=	2	2.106E+00	1.393E+00	9.612E-01	6.880E-01	5.059E-01
IY=	1	2.199E+00	1.464E+00	1.020E+00	7.368E-01	5.426E-01
IX=		16	17	18	19	20
FIEL	DV	ALUES OF BY				
IY=	5	2.210E+00	2.351E+00	2.109E+00	1.403E+00	3.235E-01
IY=	4	2.909E+00	3.295E+00	3.165E+00	2.276E+00	6.589E-01
IY=	3	3.484E+00	4.214E+00	4.397E+00	3.519E+00	1.331E+00
IY=	2	3.733E+00	4.781E+00	5.384E+00	4.771E+00	2.229E+00
IY=	1	3.406E+00	4.442E+00	5.178E+00	4.811E+00	2.565E+00
IX=		6	7	8	9	10
IY=	5	-7.964E-01	-1.585E+00	-1.928E+00	-1.965E+00	-1.867E+00
IY=	4	-1.093E+00	-2.233E+00	-2.587E+00	-2.508E+00	-2.313E+00
IY=	3	-1.233E+00	-2.777E+00	-3.057E+00	-2.795E+00	-2.505E+00
IY=	2	-1.085E+00	-3.049E+00	-3.274E+00	-2.826E+00	-2.445E+00
IY=	1	-6.622E-01	-2.732E+00	-2.996E+00	-2.522E+00	-2.106E+00
IX=		11	12	13	14	15
IY=	5	-1.716E+00	-1.542E+00	-1.350E+00	-1.135E+00	-8.853E-01
IY=	4	-2.094E+00	-1.864E+00	-1.622E+00	-1.353E+00	-1.040E+00
IY=	3	-2.237E+00	-1.978E+00	-1.714E+00	-1.426E+00	-1.092E+00
IY=	2	-2.145E+00	-1.882E+00	-1.627E+00	-1.354E+00	-1.040E+00
IY=	1	-1.812E+00	-1.578E+00	-1.363E+00	-1.139E+00	-8.873E-01
IX=	_	16	17	18	19	20

FIELD VALUES OF BZ

A 3 - 20

IY=	5	1.482E+00	1.514E+00	1.358E+00	8.251E-01	-1.687E-01
IY=	4	2.995E+00	3.196E+00	3.026E+00	2.059E+00	-3.917E-03
IY=	3	4.718E+00	5.269E+00	5.347E+00	4.096E+00	6.336E-01
IY=	2	6.427E+00	7.517E+00	8.155E+00	6.961E+00	1.967E+00
IY=	1	7.723E+00	9.305E+00	1.046E+01	9.465E+00	3.505E+00
IX=		6	7	8	9	10
IY=	5	-1.330E+00	-2.113E+00	-2.337E+00	-2.208E+00	-1.916E+00
IY=	4	-2.523E+00	-4.114E+00	-4.403E+00	-4.017E+00	-3.395E+00
IY=	3	-3.943E+00	-6.694E+00	-6.918E+00	-6.055E+00	-4.967E+00
IY=	2	-5.201E+00	-9.332E+00	-9.349E+00	-7.883E+00	-6.326E+00
IY=	1	-5.467E+00	-1.067E+01	-1.070E+01	-8.937E+00	-7.154E+00
IX=		11	12	13	14	15
IY=	5	-1.586E+00	-1.287E+00	-1.050E+00	-8.833E-01	-7.897E-01
IY=	4	-2.769E+00	-2.235E+00	-1.814E+00	-1.498E+00	-1.271E+00
IY=	3	-3.989E+00	-3.200E+00	-2.590E+00	-2.121E+00	-1.760E+00
IY=	2	-5.038E+00	-4.041E+00	-3.276E+00	-2.680E+00	-2.204E+00
IY=	1	-5.722E+00	-4.626E+00	-3.783E+00	-3.114E+00	-2.556E+00
IX=		16	17	18	19	20
FIEL	DV	ALUES OF THE	N			
IY=	5	1.808E+00	1.791E+00	1.772E+00	1.750E+00	1.741E+00
IY=	4	1.807E+00	1.790E+00	1.770E+00	1.749E+00	1.738E+00
IY=	3	1.806E+00	1.788E+00	1.767E+00	1.746E+00	1.734E+00
IY=	2	1.805E+00	1.787E+00	1.764E+00	1.743E+00	1.728E+00
IY=	1	1.805E+00	1.786E+00	1.762E+00	1.742E+00	1.727E+00
IX=		6	7	8	9	10
IY=	5	1.732E+00	1.726E+00	1.724E+00	1.723E+00	1.725E+00
IY=	4	1.729E+00	1.723E+00	1.721E+00	1.721E+00	1.723E+00
IY=	3	1.722E+00	1.719E+00	1.718E+00	1.719E+00	1.722E+00
IY=	2	1.710E+00	1.710E+ 00	1.710E+00	1.717E+00	1.721E+00
IY=	1	1.711E+00	1.711E+00	1.711E+00	1.717E+00	1.721E+00
IX=	l .	11	12	13	14	15
IY=	5	1.727E+00	1.731E+00	1.734E+00	1.737E+00	1.740E+00
IY=	4	1.727E+00	1.730E+00	1.734E+00	1.737E+00	1.740E+00
IY=	3	1.726E+00	1.730E+00	1.734E+00	1.737E+00	1.740E+00
IY=	2	1.725E+00	1.729E+00	1.733E+00	1.737E+00	1.740E+00
IY=	1	1.725E+00	1.729E+00	1.733E+00	1.737E+00	1.739E+00
IX=	•	16	17	18	19	20
FIEL	D V	ALUES OF ELC	N			
IY=	5	1.397E+05	1.353E+05	1.316E+05	1.275E+05	1.233E+05
IY=	4	1.395E+05	1.351E+05	1.313E+05	1.269E+05	1.223E+05
IY=	3	1.392E+05	1.348E+05	1.307E+05	1.258E+05	1.202E+05
IY=	2	1.388E+05	1.345E+05	1.301E+05	1.246E+05	1.174E+05
I Y =	1	1.387E+05	1.343E+05	1.298E+05	1.241E+05	1.164E+05
IX=		6	7	8	9	10
IY=	5	1.196E+05	1.161E+05	1.139E+05	1.135E+05	1.146E+05
IY=	4	1.181E+05	1.133E+05	1.116E+05	1.118E+05	1.136E+05
IY=	3	1.129E+05	1.097E+05	1.088E+05	1.101E+05	1.125E+05
IY=	2	1.025E+05	1.021E+05	1.027E+05	1.081E+05	1.117E+05
TV=	1	1.036E+05	1.030E+05	1.034E+05	1.079E+05	1.115E+05

IX=		11			12		13				14			15	
IY=	5	1.16	9E-	+05	1.189E	+05	1.	204	IE+0)5	1.2	18E	C+05	1.2	230E+05
IY=	4	1.16	3E-	+05	1.187E	+05	1.	203	BE+0)5	1.2	18E	C+05	1.2	229E+05
IY=	3	1.15	5E-1	+05	1.185E	+05	1.	202	2E+0)5	1.2	17E	C+05	1.2	229E+05
T Y =	2	1.15	1 E -	+05	1.184E	+05	1.	201	E+C	5	1.2	16	E+05	1.2	229E+05
TY=	1	1.14	9 E -	+05	1.183E	+05	1.	201	E+0	5	1.2	16	5+05	1.3	228E+05
TX=	-	16			17		18				19			20	
														20	
* * * * *	***	****	* * *	****	******	* * * * * *	* * *	***	****	* * * * *	* * *	***	***	*****	ł
TIME	STP)=	1	SWEE	P NO=	400 2	ZSL	AB	NO=	2	4	ITE	ERN	NO=	1
FLOW	FIE	LD AT	IJ	CHYD=	1, IZ	= 4,	IS	WE	EP=	400,	IS	TEF	?=	1	
FIELD) VA	LUES (ΟF	P1						-					
IY=	5	6.77	2 E -	⊦02	7.029E	+02	7.	482	2E+C	2	8.1	318	C+02	8.9	900E+02
IY=	4	6.97	5E-	+02	7.306E	+02	7.	844	1E+C)2	8.5	14E	E+02	9.1	L98E+02
IY=	3	7.05	9E-	⊦02	7.401E	+02	7.	818	3E+0)2	7.7	90E	E+02	6.9	597E+02
IY=	2	7.18	3E-	⊦02	7.554E	+02	7.	739	9E+0)2	5.9	64E	C+02	-1.9	562E+02
IY=	1	7.50	2 E +	⊦02	8.082E	+02	8.	593	BE+C)2	6.6	28E	E+02	-3.9	554E+02
IX=		6			7		8	}			9			10	
IY=	5	9.58	4E-	⊦02	9.648E	+02	9.	208	3E+0)2	8.4	51E	S+02	7.	398E+02
IY=	4	1.00	7E-	+03	1.027E	+03	9.	976	5E+0)2	9.3	89E	S+02	8.	318E+02
IY=	3	6.38	4E-	+02	7.629E	+02	8.	046	5E+0)2	8.6	53E	C+02	8.	377E+02
IY=	2	-6.76	 1 E-	⊦02 ·	-2.912E	+02 -	-6.	304	1E+()1	5.9	75E	5+02	7.9	979E+02
 TY=	1	-1.67	9E-	+02	1.387E	+02	1.	50	7E+($\frac{1}{2}$	7.6	60F	5+02	9	19E+02
IX=	-	11			12		13			-	14			15	
IY=	5	6.72	0E-	+02	6.419E	+02	6.	319) E+()2	6.2	.99E	C+02	6.	300E+02
τΥ=	4	7.40	 8 E-	+02	6.876E	+02	6.	60	5E+($\frac{1}{2}$	6.4	75E	5+02	6.	420E+02
IY=	3	7.68	 8 E-	+02	7.149E	+02	6.	818	3E+(2	6.6	34E	S+02	6.	543E+02
 IY=	2	7.92	с- 6Е-	+02	7.450E	+02	7.	05	5E+($\frac{1}{2}$	6.8	05E	z + 02	6.0	573E+02
IY=	1	8.90	с_ 8Е-	+02	8.090E	+02	7.	428	3E+($\frac{1}{2}$	7.0)19E	5+02	6.1	B11E+02
IX=	_	16			17		18	3		-	19		- • • -	20	
FIELI	o va	LUES	OF	U1		•									
IY=	5	3.38	4E-	-01	3.383E	-01	3.	382	2E-()1	3.3	8826	E-01	3.	386E-01
IY=	4	3.38	5E-	-01	3.383E	-01	3.	38:	2E-()1	3.3	882E	E-01	3.	386E-01
IY=	3	3.38	- 5 E-	-01	3.383E	-01	3.	38	2E-(01	3.3	8828	E-01	. 3.	389E-01
IY=	2	3.38	5E-	-01	3.383E	-01	3.	38	2E-()1	3.3	8831	E-01	. 3.	392E-01
IY=	1	3.38	5E-	-01	3.383E	-01	3.	382	2E-()1	3.3	883E	E-01	3.	391E-01
IX=		6			7		8	3			9			10	
IY=	5	3.39	2E-	-01	3.396E	-01	3.	40	2E-()1	3.4	1091	E-01	. 3.	413E-01
IY=	4	3.39	3E-	-01	3.396E	-01	3.	40	2E-(01	3.4	1091	E-01	. 3.	413E-01
IY=	3	3.39	4 E -	-01	3.396E	-01	3.	40)E-()1	3.4	1081	E-01	. 3.	413E-01
IY=	2	3.39	4E-	-01	3.396E	-01	3.	39	7E-(01	3.4	1081	E-01	. 3.	414E-01
IY=	1	3.39	3E-	-01	3.396E	-01	3.	39	BE-0	01	3.4	1081	E-01	. 3.	414E-01
IX=		11			12		13	3			14			15	
IY=	5	3.41	4 E -	-01	3.412E	-01	3.	41	1E-()1	3.4	1091	E-01	. 3.	407E-01
IY=	4	3.41	4 E-	-01	3.412E	-01	3.	. 41	1E-(01	3.4	1091	E-01	. 3.	407E-01
IY=	3	3.41	4 E-	-01	3.413E	-01	3.	41	1E-(01	3.4	1091	E-01	3.	407E-01
IY=	2	3.41	4E-	-01	3.413E	-01	3.	. 41	1E-(01	3.4	1091	E-01	3.	407E-01

IY=	1	3.415E-01	3.413E-01	3.411E-01	3.409E-01	3.407E-01
	T	TO TO THEC OF M1	1/	18	19	20
TV-	,	2 17/E 0E	A 7720 05	7 421 - 05	1 0955 04	1 2105 04
11 =	4		4.775E-05 7 607E 0E	7.42IE-05		1.2108-04
T X =	3 2	5.454E-V5 5.107m 05	7.007E-05	1.0056-04	1.2998-04	9.19/E-05
1Y =	4	5.18/E-05	0.7078-05	7.4938-05	4.989E-05	-4.261E-05
IY≖	T	2.8/0E-05	3.509E-05	3.2926-05	7.965E-06	-3.693E-05
1X=				8	9	10
IY =	4	1.228E-06	-2.4/4E-04	-2.30/E-04	-/.280E-05	7.23/E-05
I Y=	3	-2.359E-04	-3.648E-04	-3.28/E-04	-9.926E-05	6.711E-05
IY=	2	-4.544E-04	-5.243E-04	-4.682E-04	-4.055E-05	8.332E-05
IY=	1	-1.052E-04	-9.715E-05	-4.072E-05	8.222E-05	9.445E-05
IX =		11	12	13	14	15
IY=	4	7.362E-05	5.013E-05	3.105E-05	1.910E-05	1.295E-05
IY=	3	9.335E-05	7.353E-05	4.925E-05	3.163E-05	2.188E-05
IY=	2	9.533E-05	7.426E-05	5.029E-05	3.260E-05	2.267E-05
IY=	1	7.477E-05	5.195E-05	3.359E-05	2.126E-05	1.456E-05
IX=		16	17	18	19	20
FIEL	D V	VALUES OF W1				
IY=	5	1.219E-03	1.521E-03	1.966E-03	2.539E-03	3.142E-03
IY=	4	1.152E-03	1.436E-03	1.862E-03	2.425E-03	3.023E-03
IY=	3	1.088E-03	1.356E-03	1.763E-03	2.302E-03	2.833E-03
IY=	2	1.022E-03	1.268E-03	1.633E-03	2.092E-03	2.481E-03
IY=	1	9.550E-04	1.178E-03	1.506E-03	1.914E-03	2.266E-03
IX=		6	7	8	9	10
IY=	5	3.565E-03	3.690E-03	3.797E-03	3.643E-03	3.070E-03
IY=	4	3.353E-03	3.277E-03	3.436E-03	3.452E-03	3.027E-03
IY=	3	2.788E-03	2.668E-03	2.915E-03	3.229E-03	2.992E-03
IY=	2	1.856E-03	1.740E-03	2.097E-03	3.101E-03	3.003E-03
TY =	1	1.703E-03	1.701E-03	2.143E-03	3.183E-03	3.045E-03
 TX=	-	11	12	13	14	15
TY =	5	2.339E-03	1.696E-03	1.221E-03	9.078E-04	7.288E-04
TY=	4	2 309E-03	1 665E-03	1.193E-03	8.851E-04	7.101E-04
TV =		2.309E 03	1.659E-03	1 180E - 03	8.695E-04	6.949E-04
	2	2.3065-03	1.661 = 03	1.171E - 03	8562E-04	6 809E - 04
11	1	2.320E-03	$1.6/9F_03$	1 154F-03	8 382F-04	6.646E-04
TV-	-	16	17	18	10	20
ETET	,	TO TO	± /	10	19	20
стер ТХ		1 000E.OC		1 0000.06	1 0005.06	1 0000.06
II = IV	2		1.00000+06	1.00000000	1.000E+06	1.00000+00
1 $Y =$	4	1.00000+00	1.00000+06	1.00000406	1.00000+06	1.00000+00
1Y =	3	1.0008+06	1.00000000	1.00000+06	1.00000+06	1.00000+06
1Y =	2	1.00000+06	1.00000+06	1.000E+06	1.00000+06	1.00000+06
1Y =	T	1.000E+06	1.000E+06	1.0006+06	1.0008+06	1.000E+06
1X=	~	6		8	9	
1 Y=	5	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	4	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY =	3	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	2	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	1	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06

.

.

IX=		11	12	13	14	15
IY=	5	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	4	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	3	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	2	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IY=	1	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06
IX=		16	17	18	19	20
FIELI	o v	ALUES OF H1				
IY=	5	-2.991E+02	-2.683E+02	-2.338E+02	-1.965E+02	-1.590E+02
IY=	4	-2.981E+02	-2.668E+02	-2.312E+02	-1.920E+02	-1.522E+02
IY=	3	-2.966E+02	-2.643E+02	-2.268E+02	-1.846E+02	-1.403E+02
IY=	2	-2.951E+02	-2.619E+02	-2.226E+02	-1.770E+02	-1.272E+02
IY=	ī	-2.942E+02	-2.605E+02	-2.202E+02	-1.732E+02	-1.224E+02
IX=		6	7	8	9	10
IY=	5	-1.259E+02	-1.018E+02	-8.825E+01	-8.398E+01	-8.703E+01
IY=	4	-1.172E+02	-9.331E+01	-8.131E+01	-7.890E+01	-8.373E+01
IY=	3	-1.015E+02	-7.960E+01	-7.049E+01	-7.178E+01	-7.930E+01
IY=	2	-8.126E+01	-6.215E+01	-5.695E+01	-6.447E+01	-7.530E+01
IY=	1	-7.750E+01	-5.869E+01	-5.396E+01	-6.194E+01	-7.357E+01
IX=	_	11	12	13	14	15
IY=	5	-9.531E+01	-1.065E+02	-1.187E+02	-1.305E+02	-1.410E+02
TY=	4	-9.328E+01	-1.053E+02	-1.181E+02	-1.301E+02	-1.407E+02
IY=	3	-9.053E+01	-1.037E+02	-1.171E+02	-1.296E+02	-1.403E+02
TV=	2	-8.818E+01	-1 023E+02	-1.163E+02	-1.291E+02	-1.400E+02
	1	-8.704E+01	-1.016E+02	-1.159E+02	-1.288E+02	-1.398E+02
	-	16	17	18	19	20
FTEL	οv	ALUES OF TMP	1	10		
TY =	5	3.009E+02	- 3.315E+02	3.659E+02	4.030E+02	4.403E+02
IY =	4	3.019E+02	3.330E+02	3.685E+02	4.074E+02	4.470E+02
IY=	3	3.034E+02	3.355E+02	3.728E+02	4.149E+02	4.589E+02
IY=	2	3.049E+02	3.379E+02	3.770E+02	4.224E+02	4.720E+02
IY=	1	3.057E+02	3.393E+02	3.794E+02	4.261E+02	4.767E+02
IX=	-	6	7	8	9	10
IY=	5	4.732E+02	4.973E+02	5.107E+02	5.149E+02	5.119E+02
IY=	4	4.819E+02	5.057E+02	5.176E+02	5.200E+02	5.152E+02
IY=	3	4.975E+02	5.193E+02	5.284E+02	5.271E+02	5.196E+02
IY=	2	5.176E+02	5.367E+02	5.418E+02	5.344E+02	5.236E+02
IY=	1	5.214E+02	5.401E+02	5.448E+02	5.369E+02	5.253E+02
IX=		11	12	13	14	15
IY=	5	5.037E+02	4.925E+02	4.804E+02	4.686E+02	4.582E+02
IY=	4	5.057E+02	4.937E+02	4.810E+02	4.690E+02	4.585E+02
IY=	3	5.084E+02	4.953E+02	4.820E+02	4.696E+02	4.589E+02
IÝ=	2	5.108E+02	4.967E+02	4.828E+02	4.701E+02	4.592E+02
IY=	1	5.119E+02	4.974E+02	4.832E+02	4.703E+02	4.594E+02
IX=	-	16	17	18	19	20
FIEL	DV	VALUES OF DEL	,H			
IY=	5	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	3	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00

A 3 - 24

IY=	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IX=	_	6	7	8	9	10
IY=	5	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY =	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	3	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY =	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY =	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IX =	-	11	12	13	14	15
IY=	5	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	3	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IY=	1	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
IX=		16	17	18	19	20
FIELI	D V	ALUES OF EPO	T			
IY=	5	1.598E-04	1.807E-04	1.980E-04	2.087E-04	2.096E-04
IY=	4	1.639E-04	1.864E-04	2.060E-04	2.191E-04	2.212E-04
IY=	3	1.708E-04	1.963E-04	2.205E-04	2.387E-04	2.438E-04
IY=	2	1.783E-04	2.075E-04	2.376E-04	2.633E-04	2.742E-04
IY=	1	1.833E-04	2.152E-04	2.501E-04	2.829E-04	3.010E-04
IX=		6	7	8	9	10
IY=	5	1.991E-04	1.796E-04	1.556E-04	1.307E-04	1.068E-04
IY=	4	2.094E-04	1.868E-04	1.602E-04	1.336E-04	1.085E-04
IY=	3	2.298E-04	2.009E-04	1.691E-04	1.389E-04	1.116E-04
IY=	2	2.580E-04	2.203E-04	1.809E-04	1.456E-04	1.153E-04
IY=	1	2.850E-04	2.400E-04	1.922E-04	1.515E-04	1.183E-04
IX=		11	12	13	14	15
IY=	5	8.470E-05	6.466E-05	4.666E-05	3.057E-05	1.620E-05
IY=	4	8.567E-05	6.522E-05	4.698E-05	3.076E-05	1.632E-05
IY=	3	8.743E-05	6.619E-05	4.753E-05	3.108E-05	1.653E-05
IY=	2	8.945E-05	6.728E-05	4.812E-05	3.141E-05	1.675E-05
IY=	1	9.093E-05	6.803E-05	4.851E-05	3.163E-05	1.689E-05
IX=		16	17	18	19	20
FIEL	DV	ALUES OF JX				
IY=	5	-1.563E+01	-1.309E+01	-9.367E+00	-3.798E+00	2.980E+00
IY=	4	-1.652E+01	-1.442E+01	-1.091E+01	-4.950E+00	2.977E+00
IY=	3	-1.812E+01	-1.697E+01	-1.406E+01	-7.558E+00	2.670E+00
IY=	2	-1.997E+01	-2.019E+01	-1.847E+01	-1.181E+01	1.428E+00
IY=	1	-2.130E+01	-2.272E+01	-2.237E+01	-1.636E+01	-8.903E-01
IX=		6	7	8	9	10
IY=	5	9.230E+00	1.317E+01	1.463E+01	1.456E+01	1.376E+01
IY=	4	1.049E+01	1.481E+01	1.587E+01	1.537E+01	1.427E+01
IY=	3	1.296E+01	1.809E+01	1.833E+01	1.697E+01	1.527E+01
IY=	2	1.601E+01	2.256E+01	2.166E+01	1.914E+01	1.659E+01
IY=	1	1.805E+01	2.702E+01	2.555E+01	2.151E+01	1.785E+01
IX=		11	12	13	14	15
IY=	5	1.268E+01	1.153E+01	1.043E+01	9.406E+00	8.623E+00
IY =	4	1.299E+01	1.172E+01	1.054E+01	9.462E+00	8.646E+00

A 3-25
IY=	3	1.359E+01	1.206E+01	1.073E+01	9.562E+00	8.687E+00
IY=	2	1.435E+01	1.248E+01	1.095E+01	9.673E+00	8.730E+00
IY=	1	1.499E+01	1.280E+01	1.111E+01	9.749E+00	8.760E+00
IX=		16	17	18	19	20
FIELI	7 C	ALUES OF JY				
IY=	5	1.433E+00	1.946E+00	2.670E+00	3.371E+00	3.650E+00
IY=	4	3.881E+00	5.346E+00	7.488E+00	9.691E+00	1.073E+01
IY=	3	5.090E+00	7.192E+00	1.047E+01	1.422E+01	1.653E+01
IY=	2	4.395E+00	6.405E+00	9.797E+00	1.419E+01	1.771E+01
IY=	1	1.754E+00	2.613E+00	4.142E+00	6.285E+00	8.271E+00
IX=		6	7	8	9	10
IY=	5	3.167E+00	2.186E+00	1.376E+00	8.371E-01	4.995E-01
IY=	4	9.362E+00	6.393E+00	3.991E+00	2.405E+00	1.417E+00
IY=	3	1.470E+01	9.920E+00	6.066E+00	3.553E+00	2.025E+00
IY=	2	1.654E+01	1.143E+01	6.718E+00	3.695E+00	1.976E+00
IY=	1	8.037E+00	5.714E+00	3.267E+00	1.710E+00	8.686E-01
IX=		11	12	13	14	15
IY=	5	2.925E-01	1.692E-01	9.776E-02	5.829E-02	3.910E-02
IY=	4	8.169E-01	4.651E-01	2.650E-01	1.562E-01	1.040E-01
IY=	3	1.131E+00	6.248E-01	3.471E-01	2.007E-01	1.320E-01
IY=	2	1.047E+00	5.551E-01	2.991E-01	1.691E-01	1.097E-01
IY=	1	4.404E-01	2.263E-01	1.192E-01	6.636E-02	4.266E-02
IX=		16	17	18	19	20
FIEL	٥	ALUES OF JZ				
IY=	5	1.428E+01	1.605E+01	1.788E+01	1.910E+01	1.894E+01
IY=	4	1.514E+01	1.739E+01	2.000E+01	2.210E+01	2.234E+01
IY=	3	1.672E+01	1.993E+01	2.427E+01	2.862E+01	3.033E+01
IY=	2	1.856E+01	2.311E+01	3.018E+01	3.882E+01	4.454E+01
IY=	1	1.989E+01	2.560E+01	3.539E+01	4.934E+01	6.241E+01
IX=		6	7	8	9	10
IY=	5	1.698E+01	1.398E+01	1.138E+01	9.436E+00	8.005E+00
IY=	4	1.960E+01	1.508E+01	1.179E+01	9.619E+00	8.105E+00
IY=	3	2.585E+01	1.768E+01	1.291E+01	1.019E+01	8.413E+00
IY=	2	3.778E+01	2.283E+01	1.532E+01	1.140E+01	9.006E+00
IY=	1	5.615E+01	3.458E+01	2.049E+01	1.339E+01	9.750E+00
IX=		11	12	13	14	15
IY=	5	6.930E+00	6.094E+00	5.427E+00	4.889E+00	4.451E+00
IY=	4	6.988E+00	6.130E+00	5.449E+00	4.902E+00	4.460E+00
IY=	3	7.150E+00	6.216E+00	5.495E+00	4.927E+00	4.475E+00
IY=	2	7.422E+00	6.342E+00	5.555E+00	4.957E+00	4.493E+00
IY=	1	7.701E+00	6.452E+00	5.601E+00	4.978E+00	4.505E+00
IX=		16	17	18	19	20
FIEL	D_1	VALUES OF BX				
IY=	5	2.312E+00	3.046E+00	3.876E+00	4.618E+00	5.006E+00
IY=	4	3.056E+00	4.189E+00	5.531E+00	6.818E+00	7.552E+00
IY=	3	3.679E+00	5.205E+00	7.128E+00	9.121E+00	1.038E+01
IY=	2	4.069E+00	5.877E+00	8.270E+00	1.091E+01	1.273E+01
IY=	1	4.175E+00	6.055E+00	8.581E+00	1.146E+01	1.350E+01
IX=		6	7	8	9	10

A3-26

IY=	5	4.846E+00	4.204E+00	3.354E+00	2.542E+00	1.877E+00
IY=	4	7.308E+00	6.191E+00	4.756E+00	3.463E+00	2.467E+00
IY=	3	1.010E+01	8.394E+00	6.227E+00	4.366E+00	3.010E+00
IY=	2	1.247E+01	1.022E+01	7.393E+00	5.044E+00	3.402E+00
IY=	1	1.325E+01	1.080E+01	7.751E+00	5.263E+00	3.546E+00
IX=		11	12	13	14	15
IY=	5	1.372E+00	1.005E+00	7.427E-01	5.588E-01	4.348E-01
IY=	4	1.754E+00	1.258E+00	9.172E-01	6.828E-01	5.214E-01
IY=	3	2.086E+00	1.471E+00	1.060E+00	7.817E-01	5.898E-01
IY=	2	2.324E+00	1.624E+00	1.166E+00	8.577E-01	6.436E-01
IY=	1	2.429E+00	1.708E+00	1.236E+00	9.159E-01	6.876E-01
IX=		16	17	18	19	20
FIEL	D V	ALUES OF BY				
TY =	5	1.847E+00	1.842E+00	1.605E+00	1.096E+00	3.797E-01
TY=	4	2.291E+00	2.396E+00	2.189E+00	1.572E+00	6.057E-01
TY=	3	2.635E+00	2.878E+00	2.767E+00	2.115E+00	9.373E-01
TV=	2	2.751E+00	3.113E+00	3.124E+00	2.528E+00	1.279E+00
	1	2.5638+00	2 9268+00	2 9905+00	2.2200100	1 405E+00
- TV-	-	6	7	2.550B+00 Q	0	10
	5	-2 6978-01	-9 6025 01	_1 207E+00	_1_//1F+00	_1 //2E+00
	1		1 2205-01	-1.5076+00 1 650m.00	1 7600.00	
$1I = TV_{-}$	4		1 2055.00	-1.050E+00	-1.709E+00	-1.752E+00
	2	-3.0/3E-UI	-1.303E+00	-1.001E+00	-1.9405+00	
1 Y = T Y	1	-2.100E-01	-1.350E+00	-1.000E+UU	-1.9516+00	
$11 = TV_{-}$	T	2.2156-02	-1.0956+00	-1.0136+00	-1.0936+00	-1.5956+00
	-		1 260 - 00	1 1220,00	14 0 600m 01	10 7 940m 01
$II = TV_{-}$	С Л	-1.3/16+00	-1.200E+00	-1.122E+00	-9.0296-01	-7.040E-01
II = TV - TV	4		-1.4/4E+00	-1.302E+00	-1.100E+00	-0.002E-01
11 = 7V	2 2	-1.720E+00	-1.0596+00	-1.3/0E+00		-9.244E-01 0 00EF 01
1 1 =	1	-1.000E+UU	-1.4902+00	-1.5126+00		-0.005E-01
11=	T	-1.450E+00	-1.2986+00	-1.140E+00	-9.7106-01	-7.0046-01
1X=			17	10	19	20
FIEL	ມຼາ	ALUES OF BZ	1 2105-00	1 100 - 00	C 2105 01	1 2225 01
IY =	5	1.3368+00	1.310E+00	1.1026+00	0.218E-U1	-1.232E-UI
IY =	4	2.399E+00	2.4296+00	2.1356+00	1.329E+00	-1.460E-02
IY =	3	3.559E+00	3./1/E+00	3.428E+00	2.328E+00	2.8426-01
IY =	2	4.655E+00	5.003E+00	4.80/E+00	3.505E+00	/.8/2E-01
IY=	1	5.463E+00	5.970E+00	5.856E+00	4.443E+00	1.313E+00
IX≖	•	6	7	8	9	10
IY≖	5	-9.473E-01	-1.577E+00	-1.877E+00	-1.897E+00	-1.752E+00
IY=	4	-1.533E+00	-2.649E+00	-3.109E+00	-3.068E+00	-2.770E+00
IY=	3	-2.114E+00	-3.835E+00	-4.453E+00	-4.298E+00	-3.806E+00
IY=	2	-2.523E+00	-4.865E+00	-5.628E+00	-5.353E+00	-4.683E+00
IY=	1	-2.570E+00	-5.332E+00	-6.246E+00	-5.955E+00	-5.222E+00
IX=	•	11	12	13	14	15
IY=	5	-1.538E+00	-1.316E+00	-1.121E+00	-9.655E-01	-8.565E-01
IY=	4	-2.389E+00	-2.019E+00	-1.699E+00	-1.440E+00	-1.237E+00
IY=	3	-3.239E+00	-2.716E+00	-2.271E+00	-1.907E+00	-1.613E+00
IY=	2	-3.962E+00	-3.315E+00	-2.771E+00	-2.322E+00	-1.951E+00
IY=	1	-4.438E+00	-3.736E+00	-3.142E+00	-2.644E+00	-2.220E+00

A3-27

IX=		16		17	18	19	20
FIELD) VAL	UES C	F THCN				
IY=	5	1.813	SE+00	1.798E+00	1.781E+00	1.762E+00	1.747E+00
IY=	4	1.813	SE+00	1.797E+00	1.779E+00	1.760E+00	1.746E+00
IY=	3	1.812	E+00	1.796E+00	1.777E+00	1.756E+00	1.743E+00
IY=	2	1.811	E+00	1.795E+00	1.775E+00	1.752E+00	1.740E+00
TY =	1	1.811	E+00	1.794E+00	1.774E+00	1.750E+00	1.739E+00
IX=	-	6		7	8	9	10
IY=	5	1.740)E+00	1.735E+00	1.732E+00	1.731E+00	1.732E+00
IY=	4	1.738	BE+00	1.733E+00	1.731E+00	1.730E+00	1.731E+00
IY=	3	1.735	E+00	1.730E+00	1.728E+00	1.729E+00	1.730E+00
IY=	2	1.731	E+00	1.727E+00	1.725E+00	1.727E+00	1.729E+00
IY=	1	1.730	E + 00	1.726E+00	1.725E+00	1.726E+00	1.729E+00
IX=		11		12	13	14	15
I Y=	5	1.734	E+00	1.736E+00	1.739E+00	1.741E+00	1.743E+00
IY=	4	1.733	SE+00	1.736E+00	1.738E+00	1.741E+00	1.743E+00
TY=	3	1.733	SE+00	1.735E+00	1.738E+00	1.741E+00	1.743E+00
TY=	2	1.732	$E \pm 0.0$	1.735E+00	1.738E+00	1.741E+00	1.743E+00
TV=	1	1 732	E+00	1.735E+00	1.738E+00	1.741E+00	1.743E+00
	-	16		17	18	19	20
FIEL) VAT	JIES C	DE ELCN	± /	10	1)	20
TV =	5	1 419	SE+05	1 366E+05	1 333E+05	1.298E+05	1 262E+05
	Δ	1 414	LE+05	$1.364E\pm05$	1 331E+05	1.294E+05	1.256E+05
	2	1 /11	F+05	1 362F±05	1 3275+05	1.2940105 1.287F±05	1.2302+05 1.245E+05
	2	1 /09	10+05 18±05	1 3605+05	1 3225+05	1 2808+05	1 2338+05
	1	1 407	76±05	1 3585+05	1 3205+05	1 2768+05	1 2285+05
IX =	T	6	6403	7	8	9	10
IY=	5	1.231	E+05	1.208E+05	1.196E+05	1.192E+05	1.194E+05
TY=	4	1.223	3E+05	1.201E+05	1.189E+05	1.187E+05	1.191E+05
IY=	3	1.209	E + 05	1.188E+05	1.178E+05	1.180E+05	1.187E+05
TY=	2	1,190)E+05	1.165E+05	1.154E+05	1.167E+05	1.183E+05
TY =	1	1.186	5E+05	1.158E+05	1.149E+05	1.162E+05	1.182E+05
IX=	-	11	2.05	12	13	14	15
IY=	5	1.202	2E+05	1.213E+05	1.224E+05	1.235E+05	1.245E+05
IY=	4	1.200)E+05	1.212E+05	1.224E+05	1.235E+05	1.245E+05
IY=	3	1.198	3E+05	1.210E+05	1.223E+05	1.235E+05	1.245E+05
IY=	2	1.199	5E+05	1.209E+05	1.222E+05	1.234E+05	1.244E+05
IY=	1	1.194	4E+05	1.208E+05	1.222E+05	1.234E+05	1.244E+05
IX=		16		17	18	19	20
****	~ * * * * *	*****	*****	· · · · · · · · · · · · · · · · · · ·	***********	***********	ълляя ъ
TIME	STP=	=	I SWEE	P NO = 400	ZSLAB NO=	5 ITERN NO)= 1
FLOW	FIEI	LD AT	ITHYD=	1, IZ = 5	, ISWEEP= 400	, ISTEP= 1	L
FIELI	D VAI	LUES C	OF P1				
IY=	5	9.272	2E+02	9.559E+02	9.799E+02	9.938E+02	1.001E+03
IY=	4	9.546	5E+02	9.867E+02	1.008E+03	1.007E+03	9.931E+02
IY=	3	9.530)E+02	9.658E+02	9.330E+02	8.213E+02	6.506E+02

IY=	2	9.558E+02	9.499E+02	8.564E+02	5.965E+02	1.723E+02
IY=	1	9.950E+02	1.002E+03	9.216E+02	6.553E+02	1.971E+02
IX=		6	7	8	9	10
IY=	5	1.014E+03	1.024E+03	1.027E+03	1.018E+03	9.862E+02
IY=	4	1.011E+03	1.056E+03	1.095E+03	1.112E+03	1.084E+03
IY=	3	5.844E+02	6.753E+02	8.092E+02	9.640E+02	1.041E+03
IY=	2	-3.393E+01	1.197E+02	3.744E+02	7.596E+02	9.857E+02
IY=	1	1.044E+02	2.657E+02	5.031E+02	9.044E+02	1.123E+03
IX=	_	11	12	13	14	15
IY =	5	9.469E+02	9.106E+02	8.810E+02	8.592E+02	8.450E+02
IY=	4	1.030E+03	9.723E+02	9.233E+02	8.874E+02	8.652E+02
IY=	3	1.041E+03	1.003E+03	9.551E+02	9.150E+02	8.882E+02
IY=	2	1.055E+03	1.037E+03	9.900E+02	9.443E+02	9.123E+02
IY=	1	1.168E+03	1.117E+03	1.042E+03	9.769E+02	9.347E+02
IX=		16	17	18	19	20
FIEL	D V	ALUES OF U1				
IY=	5	3.386E-01	3.385E-01	3.384E-01	3.386E-01	3.389E-01
IY=	4	3.386E-01	3.385E-01	3.384E-01	3.386E-01	3.389E-01
IY=	3	3.386E-01	3.385E-01	3.385E-01	3.386E-01	3.391E-01
IY=	2	3.386E-01	3.385E-01	3.385E-01	3.387E-01	3.392E-01
IY=	1	3.386E-01	3.385E-01	3.385E-01	3.387E-01	3.392E-01
IX=		6	7	8	9	10
IY=	5	3.393E-01	3.397E-01	3.402E-01	3.407E-01	3.411E-01
IY=	4	3.394E-01	3.397E-01	3.401E-01	3.407E-01	3.411E-01
IY=	3	3.394E-01	3.396E-01	3.400E-01	3.406E-01	3.410E-01
IY=	2	3.394E-01	3.396E-01	3.398E-01	3.405E-01	3.410E-01
IY=	1	3.394E-01	3.396E-01	3.398E-01	3.405E-01	3.411E-01
IX=		11	12	13	14	15
IY=	5	3.412E-01	3.411E-01	3.410E-01	3.409E-01	3.407E-01
IY=	4	3.412E-01	3.411E-01	3.410E-01	3.408E-01	3.407E-01
IY=	3	3.412E-01	3.411E-01	3.410E-01	3.409E-01	3.407E-01
IY=	2	3.412E-01	3.412E-01	3.410E-01	3.409E-01	3.407E-01
IY=	1	3.412E-01	3.412E-01	3.410E-01	3.409E-01	3.407E-01
IX=		16	17	18	19	20
FIEL	DV	ALUES OF V1				
IY=	4	4.069E-06	5.325E-06	4.039E-06	-7.452E-06	-4.906E-05
IY=	3	1.042E-05	1.121E-05	3.647E-06	-2.767E-05	-1.147E-04
IY=	2	8.503E-06	5.139E-06	-1.311E-05	-6.387E-05	-1.731E-04
IY=	1	1.895E-06	-2.327E-06	-1.749E-05	-5.155E-05	-1.063E-04
IX=		6	7	8	9	10
IY=	4	-1.486E-04	-2.450E-04	-2.210E-04	-1.120E-04	-1.257E-05
IY=	3	-2.978E-04	-3.804E-04	-3.258E-04	-1.499E-04	-1.362E-05
IY=	2	-3.835E-04	-4.386E-04	-3.591E-04	-1.187E-04	7.716E-06
IY=	1	-1.708E-04	-1.725E-04	-1.177E-04	-1.782E-05	3.038E-05
IX=		11	12	13	14	15
IY=	4	2.190E-05	2.474E-05	1.867E-05	1.250E-05	8.693E-06
IY=	3	3.738E-05	4.218E-05	3.235E-05	2.196E-05	1.541E-05
IY=	2	4.723E-05	4.684E-05	3.483E-05	2.336E-05	1.632E-05
IY=	1	3.994E-05	3.331E-05	2.328E-05	1.512E-05	1.035E-05

IX=		16	17	18	19	20			
FIELD) VA	LUES OF W1							
IY=	5	1.184E-03	1.399E-03	1.678E-03	2.001E-03	2.309E-03			
IY=	4	1.149E-03	1.355E-03	1.623E-03	1.933E-03	2.221E-03			
IY=	3	1.106E-03	1.300E-03	1.550E-03	1.831E-03	2.064E-03			
IY=	2	1.063E-03	1.241E-03	1.467E-03	1.707E-03	1.866E-03			
IY=	1	1.028E-03	1.196E-03	1.405E-03	1.621E-03	1.756E-03			
IX=		6	7	8	9	10			
IY=	5	2.520E-03	2.607E-03	2.639E-03	2.546E-03	2.274E-03			
IY=	4	2.387E-03	2.432E-03	2.486E-03	2.456E-03	2.237E-03			
IY=	3	2.116E-03	2.134E-03	2.236E-03	2.326E-03	2.190E-03			
IY=	2	1.776E-03	1.781E-03	1.947E-03	2.217E-03	2.159E-03			
IY=	1	1.654E-03	1.683E-03	1.886E-03	2.201E-03	2.156E-03			
IX=	-	11	12	13	14	15			
IY=	5	1.897E-03	1.524E-03	1.215E-03	9.884E-04	8.402E-04			
IY=	4	1.876E-03	1.508E-03	1.202E-03	9.767E-04	8.302E-04			
IY =	3	1.859E-03	1.496E-03	1.190E-03	9.652E-04	8.195E-04			
IY=	2	1.849E-03	1.488E-03	1.180E-03	9.547E-04	8.093E-04			
ΙY=	1	1.845E-03	1.480E-03	1.171E-03	9.448E-04	8.002E-04			
TX =	-	16	17	18	19	20			
TA- 10 I/ 10 IY 20 FIELD VALUES OF ENUL									
IY=	5	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06			
IY=	4	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06			
IY=	3	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06			
IY=	2	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06			
TY=	1	1 000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06			
TX=	-	6	7	8	9	10			
τΥ=	5	1,000E+06	1.000E+06	1,000E+06	1,000E+06	1,000E+06			
TY=	4	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06			
TY=	3	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06			
TY =	2	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06			
TY =	1	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06			
IX=	-	11	12	13	14	15			
TY =	5	1.000E+06	1,000E+06	1.000E+06	1.000E+06	1,000E+06			
IY=	4	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06			
IY=	3	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06			
IY=	2	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06			
T Y=	1	1.000E+06	1.000E+06	1.000E+06	1.000E+06	1.000E+06			
 IX=	-	16	17	18	19	20			
FIELI) VA	LUES OF H1		2.0					
IY=	5	-3.110E+02	-2.833E+02	-2.527E+02	-2.201E+02	-1.879E+02			
TY=	4	-3.103E+02	-2.821E+02	-2.508E+02	-2.171E+02	-1.836E+02			
IÝ=	3	-3.091E+02	-2.803E+02	-2.477E+02	-2.122E+02	-1.764E+02			
TY =	2	-3.079E+02	-2.784E+02	-2.447E+02	-2.073E+02	-1.690E+02			
IY=	1	-3.072E+02	-2.774E+02	-2.429E+02	-2.046E+02	-1.654E+02			
IX=	_	6	7	8	9	10			
IY=	5	-1.594E+02	-1.378E+02	-1.245E+02	-1.188E+02	-1.196E+02			
IY=	4	-1.542E+02	-1.326E+02	-1.201E+02	-1.156E+02	-1.174E+02			
IY=	3	-1.452E+02	-1.241E+02	-1.130E+02	-1.106E+02	-1.141E+02			

IY=	2	-1.356E+02	-1.150E+02	-1.057E+02	-1.057E+02	-1.110E+02
IY=	1	-1.315E+02	-1.111E+02	-1.025E+02	-1.033E+02	-1.094E+02
IX=		11	12	13	14	15
IY=	5	-1.249E+02	-1.330E+02	-1.424E+02	-1.519E+02	-1.606E+02
IY=	4	-1.235E+02	-1.321E+02	-1.419E+02	-1.516E+02	-1.604E+02
IY=	3	-1.214E+02	-1.309E+02	-1.411E+02	-1.511E+02	-1.601E+02
IY=	2	-1.195E+02	-1.297E+02	-1.404E+02	-1.507E+02	-1.598E+02
IY=	1	-1.185E+02	-1.291E+02	-1.401E+02	-1.504E+02	-1.596E+02
IX=		16	17	18	19	20
FIEL	D V	ALUES OF TMP	L			
IY=	5	2.890E+02	3.166E+02	3.471E+02	3.795E+02	4.115E+02
IY=	4	2.897E+02	3.178E+02	3.490E+02	3.824E+02	4.158E+02
IY=	3	2.909E+02	3.196E+02	3.520E+02	3.873E+02	4.230E+02
IY=	2	2.921E+02	3.214E+02	3.551E+02	3.922E+02	4.303E+02
IY=	1	2.928E+02	3.225E+02	3.568E+02	3.949E+02	4.340E+02
IX=		6	7	8	9	10
IY=	5	4.399E+02	4.614E+02	4.747E+02	4.802E+02	4.795E+02
IY=	4	4.451E+02	4.665E+02	4.790E+02	4.835E+02	4.817E+02
IY=	3	4.540E+02	4.750E+02	4.860E+02	4.885E+02	4.850E+02
IY =	2	4.636E+02	4.841E+02	4.934E+02	4.934E+02	4.881E+02
TV=	1	4.676E+02	4.879E+02	4.966E+02	4.957E+02	4.897E+02
TX=	-	11	12	13	14	15
TY =	5	4.743E+02	4.662E+02	4.568E+02	4.474E+02	4.387E+02
TV=	4	4.757E+02	4.670E+02	4.573E+02	4.477E+02	4.389E+02
TV=	3	4.777E+02	4.683E+02	4.581E+02	4.482E+02	4.392E+02
TY =	2	4.796E+02	4.694E+02	4.588E+02	4.486E+02	4.395E+02
	1	4 806E+02	4 701E+02	4.591E+02	4.488E+02	4.397E+02
	-	16	17	18	19	20
FTEI.	υ	ALUES OF DEL	н	20		
TY =	້5່	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
TY =	4	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
TV=	à	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
TY =	2	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
	1	0.0005+00	0.000E+00	0 000E+00	0.000E+00	0.000E+00
TY-	Ŧ	6	7	8	9	10
	5	0 0005+00	0,000±+00	0 000E+00	0.000E+00	0.000E+00
	7	0.0005+00	0.0005400	0.0005+00	0.000E+00	0.000E+00
	2	0.0005+00	0.00000+00	0.00000100	0 000E+00	0.000E+00
	ר ר	0.0000 ± 00	0.00000+00	0.00000+00	0 0005100	0.0005+00
$II = TV_{-}$	1	0.0000 ± 00		0.0005+00	0.00000+00	0.00000100
	Ŧ	11	12	12	11	15
	5	11	12	1 0005+00	0 000 - 00	0 000E+00
11= TV_	2	0.000E+00	0.0000000000000000000000000000000000000	0.0005+00	0.000000000	0.00000+00
11= TV	4 2	0.0000000000	0.00000+00	0 0005+00	0 0005+00	0.0005+00
	2	0.000000000	0.0005+00	0.0005+00	0.00000+00	0.00000+00
T T =	2 1	0.0005+00	0.0005+00	0 0005+00	0 0005+00	0 0005+00
11= TV-	1	16	17	18	19	20
TV= 5101	יח	IV ATTES OF FRO	ച <i>ו</i> ጥ	TO	L 7	2 V
TY -	ייטי	1 20/m A/	1 5615 04	1 7045 04	1 7885 04	1 7038_04
τī=	5	T. 2046-04	1.0016-04	T.104D-04	T.1002-04	2.122004

IY=	4	1.414E-04	1.602E-04	1.760E-04	1.858E-04	1.869E-04
IY=	3	1.465E-04	1.673E-04	1.858E-04	1.984E-04	2.009E-04
IY=	2	1.520E-04	1.750E-04	1.967E-04	2.130E-04	2.179E-04
IY=	1	1.555E-04	1.801E-04	2.043E-04	2.235E-04	2.308E-04
IX=		6	7	8	9	10
IY=	5	1.707E-04	1.547E-04	1.345E-04	1.128E-04	9.146E-05
IY=	4	1.777E-04	1.601E-04	1.381E-04	1.151E-04	9.287E-05
IY=	3	1.907E-04	1.700E-04	1.448E-04	1.193E-04	9.538E-05
IY=	2	2.066E-04	1.821E-04	1.529E-04	1.242E-04	9.823E-05
IY=	1	2.193E-04	1.919E-04	1.592E-04	1.279E-04	1.003E-04
IX=		11	12	13	14	15
IY=	5	7.142E-05	5.305E-05	3.640E-05	2.140E-05	7.882E-06
IY=	4	7.225E-05	5.353E-05	3.668E-05	2.156E-05	7.992E-06
IY=	3	7.370E-05	5.435E-05	3.715E-05	2.183E-05	8.172E-06
IY=	2	7.531E-05	5.524E-05	3.764E-05	2.211E-05	8.358E-06
IY=	1	7.641E-05	5.583E-05	3.796E-05	2.230E-05	8.475E-06
IX=		16	17	18	19	20
FIELI	o v	ALUES OF JX				
IY=	5	-1.362E+01	-1.114E+01	-7.734E+00	-2.968E+00	2.596E+00
IY=	4	-1.425E+01	-1.201E+01	-8.685E+00	-3.644E+00	2.576E+00
IY=	3	-1.534E+01	-1.360E+01	-1.050E+01	-5.036E+00	2.411E+00
IY=	2	-1.655E+01	-1.548E+01	-1.281E+01	-7.001E+00	1.930E+00
IY=	1	-1.739E+01	-1.685E+01	-1.462E+01	-8.748E+00	1.240E+00
IX=		6	7	8	9	10
IY=	5	7.738E+00	1.127E+01	1.292E+01	1.319E+01	1.268E+01
IY=	4	8.425E+00	1.226E+01	1.381E+01	1.384E+01	1.312E+01
IY=	3	9.667E+00	1.413E+01	1.548E+01	1.506E+01	1.392E+01
IY≕	2	1.110E+01	1.648E+01	1.759E+01	1.658E+01	1.489E+01
IY=	1	1.203E+01	1.837E+01	1.940E+01	1.784E+01	1.566E+01
IX=		11	12	13	14	15
IY=	5	1.182E+01	1.084E+01	9.864E+00	8.951E+00	8.235E+00
IY=	4	1.209E+01	1.100E+01	9.958E+00	9.001E+00	8.256E+00
IY=	3	1.259E+01	1.129E+01	1.012E+01	9.086E+00	8.291E+00
IY=	2	1.317E+01	1.163E+01	1.031E+01	9.179E+00	8.328E+00
IY=	1	1.360E+01	1.186E+01	1.043E+01	9.241E+00	8.353E+00
IX=		16	17	18	19	20
FIEL	D V	ALUES OF JY				
IY=	5	1.088E+00	1.435E+00	1.888E+00	2.305E+00	2.464E+00
IY=	4	2.925E+00	3.890E+00	5.189E+00	6.434E+00	6.970E+00
IY=	3	3.778E+00	5.106E+00	6.985E+00	8.917E+00	9.926E+00
IY=	2	3.206E+00	4.415E+00	6.225E+00	8.245E+00	9.534E+00
IY=	1	1.264E+00	1.763E+00	2.541E+00	3.457E+00	4.114E+00
IX=		6	7	8	9	10
IY=	5	2.209E+00	1.664E+00	1.124E+00	7.120E-01	4.329E-01
IY=	4	6.280E+00	4.715E+00	3.164E+00	1.988E+00	1.198E+00
IY=	3	9.060E+00	6.775E+00	4.487E+00	2.768E+00	1.634E+00
IY=	2	8.921E+00	6.711E+00	4.364E+00	2.610E+00	1.491E+00
IY=	1	3.932E+00	2.987E+00	1.917E+00	1.118E+00	6.214E-01
IX=		11	12	13	14	15

A3-32

T 17	Г	2 5505 01	1 4045 01	0 5075 00	E 131 m 03	7 440 - 02
	2	2.558E-01	1.404E-UI 1 021E 01	0.00/E-U2 2 206E 01	5.131E-UZ	3.449E-UZ
II = IV - IV	4	9 367E_01	4.024E-01 5 279F_01	2.300E-01 2.977E-01	1.30/E-01 1.7/1E-01	9.145E-02
II = IV = IV	ວ າ	9.307E-01 8.206F-01	3.2790-01	2.577E-01 2.523E-01	1.7416-01	
	1	3.230E-01	1 872 E - 01	0 036F-01	5 666E 02	3.5446-02
T T T =	T	3.370E-UI 16	17	9.930E-02	10 10	3.09/6-02
TV=	יע מ	TO VINES OF 17	17	10	19	20
TV_	5	1 500F 01	1 7/95+01	1 8025101	1 076	1 0605.01
1 1 = T V =	1	1.509E+01	1 9765-01	2 0025-01		
$11 = TV_{-}$	2	1 7255:01	1 06205401	2.0036+01 2.214E+01	2.1246+01	2.1246+01
$11 = TV_{-}$	ວ າ	1 9295,01		2.2146+01	2.410E+U1 2.919E+01	2.403E+01
11 = TV_{-}	2 1		2.1246401	2.4//6401	2.0106+01	2.972E+01
$II = TV_{-}$	Ŧ	6	2.240C+01 7	0	3.100E+U1	3.4/3E+UI
	E	1 821 5 01	1 625 8.01	0 1 /00E+01	יייי אין אין אין אין אין אין אין אין אין	1 0518+01
1I = TV	2		1.0256+01	1.4096+01	1.2156+01	1.0516+01
II = IV	4 2	2 2565.01	1.0000.01	1.4046+01	1.2405+01	1.0036+01
I I =	2	2.230E+U1 2.705m.01	1.0006+01	1.0000+01	1.2936+01	1 1 2 2 2 . 01
1 Y =	4	2.7056+01	2.150E+01	1.0956+01	1.309E+01	1.1336+01
1 Y =	1	3.2056+01	2.493E+01	1.8/46+01	1.4516+01	1.1/08+01
1X=	_		12		14	15
I Y=	5	9.141E+00	8.024E+00	/.118E+00	6.389E+00	5.810E+00
IY=	4	9.220E+00	8.069E+00	7.144E+00	6.405E+00	5.820E+00
IY=	3	9.377E+00	8.154E+00	7.190E+00	6.431E+00	5.837E+00
IY=	2	9.580E+00	8.257E+00	7.243E+00	6.460E+00	5.855E+00
IY=	1	9.746E+00	8.334E+00	7.280E+00	6.479E+00	5.867E+00
IX=		16	1/	18	19	20
FIEL	יש ט	ALUES OF BX	2 704-00	2 200- 00	2 0075.00	4 14000
1Y=	5	2.2316+00	2./946+00	3.3896+00	3.88/E+00	4.140E+00
1Y=	4	2.831E+00	3.0536+00	4.539E+00	5.3126+00	5./23E+00
1Y=	5	3.3246+00	4.3836+00	5.5698+00	0.03UE+UU	7.2028+00
I X =	2	3.0386+00	4.863E+00	6.2/2E+00	7.6038+00	8.392E+00
IY =		1 744m.00				
1X=	1	3.744E+00	5.019E+00	6.493E+00	7.906E+00	8.758E+00
T 12	1	3.744E+00 6	5.019E+00 7 2.647E-00	6.493E+00 8 2.065E:00	7.906E+00 9	8.758E+00 10 1.005E+00
IY =	1	3.744E+00 6 4.050E+00	5.019E+00 7 3.647E+00	6.493E+00 8 3.065E+00	7.906E+00 9 2.453E+00	8.758E+00 10 1.905E+00
IY= IY=	1 5 4	3.744E+00 6 4.050E+00 5.594E+00 7.112E+00	5.019E+00 7 3.647E+00 4.968E+00	6.493E+00 8 3.065E+00 4.080E+00	7.906E+00 9 2.453E+00 3.180E+00	8.758E+00 10 1.905E+00 2.409E+00
IY= IY= IY=	1 5 4 3	3.744E+00 6 4.050E+00 5.594E+00 7.112E+00	5.019E+00 7 3.647E+00 4.968E+00 6.250E+00	6.493E+00 8 3.065E+00 4.080E+00 5.036E+00	7.906E+00 9 2.453E+00 3.180E+00 3.839E+00	8.758E+00 10 1.905E+00 2.409E+00 2.847E+00
IY= IY= IY= IY=	1 5 4 3 2	3.744E+00 6 4.050E+00 5.594E+00 7.112E+00 8.241E+00	5.019E+00 7 3.647E+00 4.968E+00 6.250E+00 7.195E+00	6.493E+00 8 3.065E+00 4.080E+00 5.036E+00 5.726E+00	7.906E+00 9 2.453E+00 3.180E+00 3.839E+00 4.304E+00	8.758E+00 10 1.905E+00 2.409E+00 2.847E+00 3.153E+00
IY= IY= IY= IY= IY=	1 5 4 3 2 1	3.744E+00 6 4.050E+00 5.594E+00 7.112E+00 8.241E+00 8.602E+00	5.019E+00 7 3.647E+00 4.968E+00 6.250E+00 7.195E+00 7.493E+00	6.493E+00 8 3.065E+00 4.080E+00 5.036E+00 5.726E+00 5.948E+00	9 2.453E+00 3.180E+00 3.839E+00 4.304E+00 4.467E+00	8.758E+00 10 1.905E+00 2.409E+00 2.847E+00 3.153E+00 3.276E+00
IY= IY= IY= IY= IY= IX=	1 5 4 3 2 1	3.744E+00 6 4.050E+00 5.594E+00 7.112E+00 8.241E+00 8.602E+00 11	5.019E+00 7 3.647E+00 4.968E+00 6.250E+00 7.195E+00 7.493E+00 12	6.493E+00 8 3.065E+00 4.080E+00 5.036E+00 5.726E+00 5.948E+00 13	7.906E+00 9 2.453E+00 3.180E+00 3.839E+00 4.304E+00 4.467E+00 14	8.758E+00 10 1.905E+00 2.409E+00 2.847E+00 3.153E+00 3.276E+00 15
IY= IY= IY= IY= IY= IX= IY=	1 5 4 3 2 1 5	3.744E+00 6 4.050E+00 5.594E+00 7.112E+00 8.241E+00 8.602E+00 11 1.457E+00	5.019E+00 7 3.647E+00 4.968E+00 6.250E+00 7.195E+00 7.493E+00 12 1.110E+00	6.493E+00 8 3.065E+00 4.080E+00 5.036E+00 5.726E+00 5.948E+00 13 8.488E-01	7.906E+00 9 2.453E+00 3.180E+00 3.839E+00 4.304E+00 4.467E+00 14 6.565E-01	8.758E+00 10 1.905E+00 2.409E+00 2.847E+00 3.153E+00 3.276E+00 15 5.201E-01
IY= IY= IY= IY= IX= IY= IY=	1 5 4 3 2 1 5 4	3.744E+00 6 4.050E+00 5.594E+00 7.112E+00 8.241E+00 8.602E+00 11 1.457E+00 1.804E+00	5.019E+00 7 3.647E+00 4.968E+00 6.250E+00 7.195E+00 7.493E+00 12 1.110E+00 1.352E+00	6.493E+00 8 3.065E+00 4.080E+00 5.036E+00 5.726E+00 5.948E+00 13 8.488E-01 1.021E+00	7.906E+00 9 2.453E+00 3.180E+00 3.839E+00 4.304E+00 4.467E+00 14 6.565E-01 7.821E-01	8.758E+00 10 1.905E+00 2.409E+00 2.847E+00 3.153E+00 3.276E+00 15 5.201E-01 6.097E-01
IY= IY= IY= IY= IY= IY= IY= IY=	1 5 4 3 2 1 5 4 3	3.744E+00 6 4.050E+00 5.594E+00 7.112E+00 8.241E+00 8.602E+00 11 1.457E+00 1.804E+00 2.096E+00	5.019E+00 7 3.647E+00 4.968E+00 6.250E+00 7.195E+00 7.493E+00 12 1.110E+00 1.352E+00 1.550E+00	6.493E+00 8 3.065E+00 4.080E+00 5.036E+00 5.726E+00 5.948E+00 13 8.488E-01 1.021E+00 1.160E+00	7.906E+00 9 2.453E+00 3.180E+00 3.839E+00 4.304E+00 4.467E+00 14 6.565E-01 7.821E-01 8.806E-01	8.758E+00 10 1.905E+00 2.409E+00 2.847E+00 3.153E+00 3.276E+00 15 5.201E-01 6.097E-01 6.795E-01
IY= IY= IY= IY= IY= IY= IY= IY= IY=	1 5 4 3 2 1 5 4 3 2	3.744E+00 6 4.050E+00 5.594E+00 7.112E+00 8.241E+00 8.602E+00 11 1.457E+00 1.804E+00 2.096E+00 2.300E+00	5.019E+00 7 3.647E+00 4.968E+00 6.250E+00 7.195E+00 7.493E+00 12 1.110E+00 1.352E+00 1.550E+00 1.691E+00	6.493E+00 8 3.065E+00 4.080E+00 5.036E+00 5.726E+00 13 8.488E-01 1.021E+00 1.160E+00 1.261E+00	7.906E+00 9 2.453E+00 3.180E+00 3.839E+00 4.304E+00 4.467E+00 14 6.565E-01 7.821E-01 8.806E-01 9.553E-01	8.758E+00 10 1.905E+00 2.409E+00 2.847E+00 3.153E+00 3.276E+00 15 5.201E-01 6.097E-01 6.795E-01 7.334E-01
IY= IY= IY= IY= IY= IY= IY= IY= IY= IY=	1 5 4 3 2 1 5 4 3 2 1	3.744E+00 6 4.050E+00 5.594E+00 7.112E+00 8.241E+00 8.602E+00 11 1.457E+00 1.804E+00 2.096E+00 2.300E+00 2.398E+00	5.019E+00 7 3.647E+00 4.968E+00 6.250E+00 7.195E+00 7.493E+00 12 1.110E+00 1.352E+00 1.550E+00 1.691E+00 1.772E+00	6.493E+00 8 3.065E+00 4.080E+00 5.036E+00 5.726E+00 13 8.488E-01 1.021E+00 1.160E+00 1.261E+00 1.329E+00	9 2.453E+00 3.180E+00 3.839E+00 4.304E+00 4.467E+00 14 6.565E-01 7.821E-01 8.806E-01 9.553E-01 1.012E+00	8.758E+00 10 1.905E+00 2.409E+00 2.847E+00 3.153E+00 3.276E+00 15 5.201E-01 6.097E-01 6.795E-01 7.334E-01 7.771E-01
IY= IY= IY= IY= IY= IY= IY= IY= IY= IY=	1 5 4 3 2 1 5 4 3 2 1 2	3.744E+00 6 4.050E+00 5.594E+00 7.112E+00 8.241E+00 8.602E+00 11 1.457E+00 1.804E+00 2.096E+00 2.300E+00 2.398E+00 16	5.019E+00 7 3.647E+00 4.968E+00 6.250E+00 7.195E+00 7.493E+00 12 1.110E+00 1.352E+00 1.550E+00 1.691E+00 1.772E+00 17	6.493E+00 8 3.065E+00 4.080E+00 5.036E+00 5.726E+00 5.948E+00 13 8.488E-01 1.021E+00 1.160E+00 1.261E+00 1.329E+00 18	9 2.453E+00 3.180E+00 3.839E+00 4.304E+00 4.467E+00 14 6.565E-01 7.821E-01 8.806E-01 9.553E-01 1.012E+00 19	8.758E+00 10 1.905E+00 2.409E+00 2.847E+00 3.153E+00 3.276E+00 15 5.201E-01 6.097E-01 6.795E-01 7.334E-01 7.771E-01 20
IY= IY= IY= IY= IY= IY= IY= IY= IY= IY=	1 5 4 3 2 1 5 4 3 2 1 2 1	3.744E+00 6 4.050E+00 5.594E+00 7.112E+00 8.241E+00 8.602E+00 11 1.457E+00 1.804E+00 2.096E+00 2.300E+00 2.398E+00 16 ALUES OF BY	5.019E+00 7 3.647E+00 4.968E+00 6.250E+00 7.195E+00 7.493E+00 12 1.110E+00 1.352E+00 1.550E+00 1.691E+00 1.772E+00 17	6.493E+00 8 3.065E+00 4.080E+00 5.036E+00 5.726E+00 5.948E+00 13 8.488E-01 1.021E+00 1.160E+00 1.261E+00 1.329E+00 18 1.280E+00	7.906E+00 9 2.453E+00 3.180E+00 3.839E+00 4.304E+00 4.467E+00 14 6.565E-01 7.821E-01 8.806E-01 9.553E-01 1.012E+00 19 8.820E.01	8.758E+00 10 1.905E+00 2.409E+00 2.847E+00 3.153E+00 3.276E+00 15 5.201E-01 6.097E-01 7.334E-01 7.771E-01 20
IY= IY= IY= IY= IY= IY= IY= IY= IY= IX= FIEL IY=		3.744E+00 6 4.050E+00 5.594E+00 7.112E+00 8.241E+00 8.602E+00 11 1.457E+00 1.804E+00 2.096E+00 2.300E+00 2.398E+00 16 ALUES OF BY 1.600E+00	5.019E+00 7 3.647E+00 4.968E+00 6.250E+00 7.195E+00 7.493E+00 12 1.110E+00 1.352E+00 1.691E+00 1.772E+00 1.7 1.529E+00 1.976E+00	6.493E+00 8 3.065E+00 4.080E+00 5.036E+00 5.726E+00 5.948E+00 13 8.488E-01 1.021E+00 1.160E+00 1.261E+00 1.329E+00 18 1.289E+00 1.632E+00	7.906E+00 9 2.453E+00 3.180E+00 3.839E+00 4.304E+00 4.467E+00 14 6.565E-01 7.821E-01 8.806E-01 9.553E-01 1.012E+00 19 8.829E-01 1.152E+00	8.758E+00 10 1.905E+00 2.409E+00 2.847E+00 3.153E+00 3.276E+00 15 5.201E-01 6.097E-01 7.334E-01 7.771E-01 20 3.573E-01 4.940E 01
IY= IY= IY= IY= IY= IY= IY= IY= IY= IY=	1 5 4 3 2 1 5 4 3 2 1 ,D V 5 4 2	3.744E+00 6 4.050E+00 5.594E+00 7.112E+00 8.241E+00 8.602E+00 11 1.457E+00 1.804E+00 2.096E+00 2.300E+00 2.398E+00 16 ALUES OF BY 1.600E+00 1.900E+00	5.019E+00 7 3.647E+00 4.968E+00 6.250E+00 7.195E+00 7.493E+00 12 1.110E+00 1.352E+00 1.691E+00 1.772E+00 1.772E+00 1.876E+00 2.144E+00	6.493E+00 8 3.065E+00 4.080E+00 5.036E+00 5.726E+00 13 8.488E-01 1.021E+00 1.160E+00 1.261E+00 1.329E+00 1.8 1.289E+00 1.633E+00 1.926E+00	<pre>7.906E+00 9 2.453E+00 3.180E+00 3.839E+00 4.304E+00 4.467E+00 14 6.565E-01 7.821E-01 8.806E-01 9.553E-01 1.012E+00 19 8.829E-01 1.153E+00 1.415E:00</pre>	8.758E+00 10 1.905E+00 2.409E+00 2.847E+00 3.153E+00 3.276E+00 15 5.201E-01 6.795E-01 7.334E-01 7.771E-01 20 3.573E-01 4.940E-01 6.610E 01
IY= IY= IY= IY= IY= IY= IY= IY= IY= IY=	1 5 4 3 2 1 5 4 3 2 1 , 0 V 5 4 3 2	3.744E+00 6 4.050E+00 5.594E+00 7.112E+00 8.241E+00 8.602E+00 11 1.457E+00 1.804E+00 2.096E+00 2.300E+00 2.398E+00 16 ALUES OF BY 1.600E+00 1.900E+00 2.112E+00 2.170E+00	5.019E+00 7 3.647E+00 4.968E+00 6.250E+00 7.195E+00 7.493E+00 12 1.110E+00 1.352E+00 1.550E+00 1.691E+00 1.772E+00 1.7 1.529E+00 1.876E+00 2.144E+00 2.252E+00	6.493E+00 8 3.065E+00 4.080E+00 5.036E+00 5.726E+00 13 8.488E-01 1.021E+00 1.160E+00 1.261E+00 1.329E+00 1.8 1.289E+00 1.633E+00 1.926E+00 2.07EE:00	7.906E+00 9 2.453E+00 3.180E+00 3.839E+00 4.304E+00 4.467E+00 14 6.565E-01 7.821E-01 8.806E-01 9.553E-01 1.012E+00 19 8.829E-01 1.153E+00 1.415E+00 1.580E:00	8.758E+00 10 1.905E+00 2.409E+00 2.847E+00 3.153E+00 3.276E+00 15 5.201E-01 6.097E-01 6.795E-01 7.334E-01 7.771E-01 20 3.573E-01 4.940E-01 6.610E-01

A 3 - 33

IY=	1	2.041E+00	2.127E+00	1.985E+00	1.549E+00	8.510E-01
TV-	5	_1 8865_01	-6^{\prime} $184F-01$	-9 608F-01	-1 125F±00	-1 177E+00
TV =	Δ	-2.046F-01	-7.862F-01	-1.163E+00	-1 3/3F+00	-1.38/E+00
	7	-2.040E-01	-8.390E-01	-1.265E+00	-1.//9F+00	-1 4778+00
	2	-6.133 = 02	_7 890F_01	$-1.237E \pm 00$	-1.4955+00 -1.421F+00	-1.4/75+00
TV-	1	4 885F-02	-6.392 = 01	-1.067 F ± 00	-1.245F±00	-1.267E+00
IX =	-	11	12	13	14	15
IY=	5	-1.155E+00	-1.088E+00	-9.909E-01	-8.733E-01	-7.346E-01
IY=	4	-1.341E+00	-1.251E+00	-1.129E+00	-9.851E-01	-8.156E-01
IY=	3	-1.418E+00	-1.314E+00	-1.180E+00	-1.025E+00	-8.449E-01
IY=	2	-1.376E+00	-1.270E+00	-1.139E+00	-9.902E-01	-8.183E-01
IY=	1	-1.212E+00	-1.120E+00	-1.008E+00	-8.824E-01	-7.395E-01
IX=		16	17	18	19	20
FIEL	D V	ALUES OF BZ				
IY=	5	1.131E+00	1.060E+00	8.467E-01	4.548E-01	-8.816E-02
IY=	4	1.861E+00	1.789E+00	1.482E+00	8.690E-01	-1.317E-02
IY=	3	2.622E+00	2.576E+00	2.207E+00	1.388E+00	1.452E-01
IY=	2	3.319E+00	3.321E+00	2.924E+00	1.940E+00	3.756E-01
IY=	1	3.838E+00	3.883E+00	3.468E+00	2.374E+00	6.016E-01
IX=		6	7	8	9	10
IY=	5	-6.718E-01	-1.152E+00	-1.442E+00	-1.540E+00	-1.502E+00
IY=	4	-9.699E-01	-1.738E+00	-2.167E+00	-2.281E+00	-2.185E+00
IY=	3	-1.227E+00	-2.315E+00	-2.891E+00	-3.011E+00	-2.850E+00
IY=	2	-1.383E+00	-2.770E+00	-3.485E+00	-3.614E+00	-3.401E+00
IY=	1	-1.406E+00	-2.993E+00	-3.814E+00	-3.974E+00	-3.752E+00
IX=		11	12	13	14	15
IY=	5	-1.386E+00	-1.240E+00	-1.094E+00	-9.651E-01	-8.622E-01
I Y=	4	-1.984E+00	-1.752E+00	-1.527E+00	-1.328E+00	-1.161E+00
IY=	3	-2.562E+00	-2.244E+00	-1.942E+00	-1.676E+00	-1.448E+00
IY=	2	-3.046E+00	-2.662E+00	-2.301E+00	-1.980E+00	-1.703E+00
IY=	1	-3.373E+00	-2.961E+00	-2.571E+00	-2.220E+00	-1.907E+00
IX=		16	17	18	19	20
FIEL	D١	ALUES OF THO	'N			
IY=	5	1.819E+00	1.805E+00	1.790E+00	1.774E+00	1.758E+00
IY=	4	1.819E+00	1.805E+00	1.789E+00	1.772E+00	1.756E+00
IY=	3	1.818E+00	1.804E+00	1.787E+00	1.770E+00	1.752E+00
IY=	2	1.817E+00	1.803E+00	1.786E+00	1.767E+00	1.749E+00
IY=	1	1.817E+00	1.802E+00	1.785E+00	1.766E+00	1.749E+00
IX=		6	7	8	9	10
IY=	5	1.747E+00	1.743E+00	1.740E+00	1.739E+00	1.739E+00
IY=	4	1.746E+00	1.742E+00	1.739E+00	1.738E+00	1.738E+00
IY=	3	1.744E+00	1.740E+00	1.737E+00	1.737E+00	1.738E+00
IY=	2	1.742E+00	1.738E+00	1.736E+00	1.736E+00	1.737E+00
IY=	1	1.741E+00	1.737E+00	1.735E+00	1.735E+00	1.737E+00
IX=		11	12	13	14	15
IY=	5	1.740E+00	1.742E+00	1.744E+00	1.746E+00	1.747E+00
IY=	4	1.740E+00	1.741E+00	1.743E+00	1.746E+00	1.747E+00
IY=	3	1.739E+00	1.741E+00	1.743E+00	1.745E+00	1.747E+00

A 3 - 34

IY= 2	1.739E	+00 1.741	E+00 1.	743E+00	1.745E+00	1.747E+00
IY = 1	1.738E	+00 1.741	E+00 1.	743E+00	1.745E+00	1.747E+00
IX=	16	17	18		19	20
FIELD	VALUES OF	ELCN				
IY = 5	1.436E	+05 1.388	E+05 1.	351E+05	1.320E+05	1.290E+05
IY = 4	1.435E	+05 1.386	E+05 1.	349E+05	1.31/E+05	1.286E+05
IY = 3	1.432E	+05 1.383	E+05 1.	346E+05	1.313E+05	1.2/9E+05
IY = 2	1.430E	+05 1.380	E+05 1.	343E+05	1.308E+05	1.2/2E+05
IY = 1	1.429E	+05 1.378	E+05 1.	342E+05	1.306E+05	1.269E+05
IX=	6	7	8		9	10
IY = 5	1.263E	+05 1.242	E+05 1.	230E+05	1.225E+05	1.225E+05
IY = 4	1.258E	+05 1.238	E+05 1.	226E+05	1.221E+05	1.223E+05
IY = 3	1.250E	+05 1.230	E+05 1.	219E+05	1.217E+05	1.220E+05
IY = 2	1.241E	+05 1.221	E+05 1.	212E+05	1.212E+05	1.217E+05
IY = 1	1.237E	+05 1.218	E+05 1.	209E+05	1.210E+05	1.216E+05
IX=	11	12	13		14	15
IY= 5	1.230E	+05 1.238	E+05 1.	247E+05	1.256E+05	1.264E+05
IY = 4	1.229E	+05 1.237	E+05 1.	246E+05	1.255E+05	1.264E+05
IY = 3	1.227E	+05 1.236	E+05 1.	245E+05	1.255E+05	1.263E+05
IY= 2	1.225E	+05 1.235	E+05 1.	245E+05	1.254E+05	1.263E+05
IY= 1	1.224E	+05 1.234	E+05 1.	244E+05	1.254E+05	1.263E+05
IX=	16	17	18		19	20
*****	******	******	******	******	*****	* * * *
TIME S	TP = 1	SWEEP NO=	400 ZSL	AB NO=	10 ITERN NO	= 1
WHOLE-	FIELD RES	IDUALS BEFO	RE SOLUTI	ONS		
WHOLE-	FIELD SUM	OF ABS(VOL	.FLOW RES	IDUALS)=	7.700E+04	
WHOLE-	FIELD SUM	OF ABS (RES	IDUALS) O	F U1 =	7.427E+10	
WHOLE-	FIELD SUM	OF ABS(RES	IDUALS) O	FV1 =	3.257E+10	
WHOLE-	FIELD SUM	OF ABS(RES	IDUALS) O	FW1 =	2.760E+11	
WHOLE-	FIELD SUM	OF ABS(RES	IDUALS) O	F H1 =	2.230E+08	
WHOLE-	FIELD SUM	OF ABS(RES	IDUALS) O	F = EPOT =	7.428E+07	
* SUMS	HAVE BEE	N DIVIDED B	Y RESREF(NAME)		
11000 0.0			IL NAMED -	TNEED	- 4 2095-00	
NET SC	OURCE OF U	I AT PATC	H NAMED:	INLET	= 4.200E+00	
NET SC	OURCE OF U	I AT PATC	H NAMED:	FIXVEL -	= 2.9000+02	
NET SC	OURCE OF U	I AT PATC	H NAMED:	MRNGN	=-1.30/E+U1	
NET SC	URCE OF U	I AT PATC	H NAMED:	LORENTZ	=-1.565E+UZ	
NET SC	URCE OF V	1 AT PATC	H NAMED:	FIXVEL	= 1.280E+02	
NET SC	OURCE OF V	1 AT PATC	H NAMED:	BUOY	=-2.44/E+00	
NET SC	OURCE OF V	AT PATC	H NAMED:	LORENTZ	= 1.004E+U3	
NET SC	DURCE OF W	I AT PATC	H NAMED:	FIXVEL	=-1./03E+UZ	
NET SC	DURCE OF W	AT PATC	n NAMED:	TIKINGN	= 3.141E+V1	
NET SC	DURCE OF W	AT PATC	IN NAMED:	LUKENTZ	=-1.223E+U3	
NET SC	STREET AND AND A STREET			1 101 1 10.11		
ALL DO	NUDGE OF F		U NAMED -		-1.2305701	
NET SC	URCE OF F	AT PAIC	CH NAMED:	OUTLET	= -1.238E+01 = -1.238E+01	
NET SC NET SC	OURCE OF FOURCE	AT PATC AT PATC AT PATC	CH NAMED: CH NAMED: CH NAMED:	OUTLET ZEROP	= -1.238E+01 = -1.238E+01 = 3.001E-05	

NET SOURCE OF H1 AT PATCH NAMED: HEAT = 1.181E+03SOURCE OF H1 AT PATCH NAMED: SPECIAL = 1.248E+01NET NET SOURCE OF H1 AT PATCH NAMED: HTLOSUPS =-4.681E+01NET SOURCE OF H1 AT PATCH NAMED: HTLOSLOS =-2.334E+01SOURCE OF EPOT AT PATCH NAMED: INLET = 0.000E+00NET SOURCE OF EPOT AT PATCH NAMED: ZEROP = -3.624E + 01NET SOURCE OF EPOT AT PATCH NAMED: HEAT = 1.036E+02NET NET SOURCE OF EPOT AT PATCH NAMED: JZOUT =-1.036E+02SPOT VALUES VS. SWEEP (/ITHYD IF PARAB) IXMON= 13 IYMON= 1 IZMON= 1 TABULATION OF ABSCISSA AND ORDINATES... **v1** W1 ISWP P1 U1 н1 1.000E+011.300E+02 3.462E-01 6.108E-03 8.609E-03 -1.810E+02 2.000E+01 8.664E+01 3.391E-01 -2.653E-04 -4.789E-04 -8.376E+01 3.000E+01 3.084E+02 3.765E-01 3.824E-02 5.121E-02 2.397E+00 4.000E+01 1.241E+03 3.300E-01 -1.043E-02 -1.966E-02 8.626E+01 5.000E+01 4.023E+02 3.543E-01 2.200E-01 -1.692E-02 1.503E+02 6.000E+01 2.765E+02 4.611E-01 5.347E-01 -5.074E-02 1.907E+02 7.000E+01 4.546E+02 3.075E-01 8.779E-01 5.891E-02 2.340E+02 8.000E+01 3.593E+02 4.699E-01 1.045E+00 2.967E+02 1.851E-01 9.000E+01 2.513E+02 6.454E-01 1.052E+002.823E-01 3.234E+02 1.000E+021.473E+028.818E-01 1.030E+003.834E-01 3.327E+02 1.100E+022.120E+02 1.107E+009.958E-01 4.871E-01 3.459E+02 1.200E+02 1.522E+02 1.334E+009.506E-01 5.652E-01 3.527E+02 3.644E+02 1.300E+02 4.343E+01 1.593E+008.634E-01 6.610E-01 1.400E+028.267E+01 1.815E+007.551E-01 7.736E-01 3.586E+02 3.554E+02 1.500E+02 1.198E+022.008E+00 6.675E-01 8.448E-01 1.600E+025.852E+01 2.202E+00 5.582E-01 9.332E-01 3.507E+02 1.700E+02 1.610E+02 2.405E+00 3.141E-01 1.064E+003.375E+02 1.800E+02 8.790E+01 2.550E+00 2.174E-01 1.129E+003.356E+02 1.199E+00 3.302E+02 1.900E+02 1.746E+01 2.733E+00 9.167E-02 2.000E+02 5.724E+01 2.899E+00 -3.376E-02 1.274E+00 3.125E+02 2.117E+00 -7.788E-01 3.197E+02 2.100E+02 -2.499E+03 6.316E-01 2.200E+02 -2.810E+03 1.866E+00 -1.694E+00 6.395E-01 2.616E+02 1.432E+00 -2.957E+00 4.345E-01 9.179E+01 2.300E+02 -2.266E+03 7.647E+01 2.400E+02 -1.719E+03 6.366E-01 -3.909E+00 -1.871E-01 7.419E+01 2.500E+02 -2.274E+03 -3.198E-01 -5.040E+00 -5.931E-01 5.834E+01 2.600E+02 -2.127E+03 -1.163E+00 -6.103E+00 -1.070E+00 2.700E+02 -2.160E+03 -2.214E+00 -6.963E+00 -1.733E+00 5.107E+01 2.800E+02 -2.246E+03 -3.343E+00 -7.832E+00 -2.335E+00 4.777E+01 2.900E+02 -2.107E+03 -4.397E+00 -8.699E+00 -2.851E+00 4.431E+01 3.000E+02 -1.963E+03 -5.526E+00 -9.598E+00 -3.394E+00 4.214E+01 3.100E+02 -1.843E+03 -6.659E+00 -1.042E+01 -3.876E+00 3.981E+01 3.200E+02 -1.745E+03 -7.728E+00 -1.115E+01 -4.257E+00 3.701E+01 3.300E+02 -1.455E+03 -8.723E+00 -1.179E+01 -4.571E+00 3.414E+01 3.400E+02 -1.195E+03 -9.656E+00 -1.229E+01 -4.803E+00 3.311E+01

3.500E+02	-1.059E+03	-1.057E+01	-1.271E+01	-4.992E+00	3.267E+01
3.600E+02	-9.661E+02	-1.142E+01	-1.305E+01	-5.135E+00	3.037E+01
3.700E+02	-8.375E+02	-1.223E+01	-1.332E+01	-5.273E+00	2.731E+01
3.800E+02	-7.365E+02	-1.308E+01	-1.355E+01	-5.419E+00	2.940E+01
3.900E+02	-6.793E+02	-1.388E+01	-1.369E+01	-5.540E+00	2.618E+01
4.000E+02	-6.057E+02	-1.463E+01	-1.377E+01	-5.633E+00	2.537E+01
ISWP	EPOT				
1.000E+01	1.651E-04				
2.000E+01	2.163E-04				
3.000E+01	2.624E-04				
4.000E+01	3.530E-04				
5.000E+01	3.840E-04				
6.000E+01	4.040E-04				
7.000E+01	4.349E-04				
8.000E+01	4.807E-04				
9.000E+01	5.079E-04				
1.000E+02	5.147E-04				
1.100E+02	5.203E-04				
1.200E+02	5.232E-04				
1.300E+02	5.338E-04				
1.400E+02	5.344E-04				
1.500E+02	5.350E-04				
1.600E+02	5.354E-04				
1.700E+02	5.343E-04				
1.800E+02	5.350E-04				
1.900E+02	5.380E-04				
2.000E+02	5.080E-04				
2.100E+02	4.921E-04				
2.200E+02	4.963E-04				
2.300E+02	4.740E-04				
2.400E+02	4.846E-04				
2.5006+02	4.0285-04				
2.00000+02	4.034E-04				
2.700E+02					
	4.775E-04				
2.9000+02	4./54E-04 2.024E 04				
3 10000402	3.5246-04				
3 2005+02	3.5568-04				
3 3005+02	3 3675-04				
3 400F+02	3.201E-04				
3 500E+02	3 256E-04				
3.600E+02	3.126E-04				
3.700E+02	3.186E-04				
3.800E+02	3.143E-04				
3.900E+02	3.095E-04				
4.000E+02	3.056E-04				
VARIABLE	P1	U1	V1	W1	Н1
MINVAL=	-2.810E+03	-1.463E+01	-1.377E+01	-5.633E+00	-1.810E+02

A3-37

1.241E+032.899E+00 1.052E+00 1.274E+003.644E+02 MAXVAL= CELLAV= -7.161E+02 -2.358E+00 -4.228E+00 -1.254E+00 1.544E+02VARIABLE EPOT MINVAL= 1.651E-045.380E-04 MAXVAL= 4.251E-04 CELLAV= 1.00 +....P+V.VVV.VEEE.EEE+EEEW+U...+....+....+....+.... .+ 0.90 VV VVVU UHE EWWW WW HHE EEWE E E + 0.80 WW WWWW HEP HEW UE ΕE + 0.70 PP ΗE PPPP PPP PPPP VV WWU + 0.60 +EΕ V W UUE + HH HVV W UE EE 0.50 +Е PPP PP HH HHHH HHE EEEE EE 0.40 +VWW PUU 0.30 +Ε P + 0.20 +H PP PPV WW UU + 0.10 + EΡΡ Ρ Ρ VW WWWU + 0.00 E....+...+...+...+.P..+...+...+....VVW.WW .3 .4 .5 .6 .1 .2 .7 .8 .9 1.0 0 MIN = 1.00E + 01 MAX = 4.00E + 02THE ABSCISSA IS ISWP. ******* RESIDUALS VS. SWEEP (/ITHYD IF PARAB) TABULATION OF ABSCISSA AND ORDINATES... V1 W1 H1 ISWP P1 U1 1.592E+11 1.278E+11 2.073E+11 2.316E+09 1.000E+01 2.999E+04 2.544E+04 1.951E+111.293E+11 2.619E+11 2.301E+09 2.000E+01 3.000E+01 1.298E+053.100E+11 2.733E+11 5.982E+11 2.103E+09 4.000E+01 5.186E+04 1.625E+11 1.157E+113.793E+11 1.980E+09 1.021E+053.738E+11 3.153E+116.085E+11 1.797E+09 5.000E+01 1.778E+09 6.000E+01 1.186E+05 4.038E+11 3.336E+11 6.218E+11 7.000E+01 8.071E+04 3.799E+11 3.078E+11 6.136E+11 1.641E+091.592E+098.000E+01 6.410E+042.362E+11 1.946E+114.042E+119.309E+10 2.098E+11 1.521E+099.000E+01 4.403E+041.200E+11 1.476E+09 1.000E+02 3.998E+048.400E+10 6.936E+10 2.159E+11 2.086E+11 1.181E+09 1.100E+02 1.053E+11 8.018E+10 3.011E+04 1.044E+091.200E+023.223E+04 6.569E+104.763E+10 1.295E+111.978E+11 1.438E+11 2.250E+11 9.623E+08 1.300E+02 3.744E+04 3.286E+04 1.400E+021.124E+118.625E+10 1.778E+118.914E+08 1.500E+02 2.187E+04 9.148E+10 8.840E+10 2.099E+11 8.034E+08 7.162E+08 1.600E+023.460E+04 7.195E+10 5.648E+10 1.206E+11 1.700E+02 4.516E+04 1.226E+11 2.427E+11 6.662E+08 1.014E+115.930E+08 1.800E+02 3.305E+04 6.510E+10 5.669E+101.303E+111.900E+02 3.033E+04 1.062E+11 9.172E+10 1.805E+11 5.285E+08 2.000E+02 2.885E+04 6.604E+106.130E+10 1.355E+114.841E+08 2.100E+02 1.552E+06 7.559E+12 1.075E+13 1.697E+09 6.490E+12

A3-38

2.200E+02	3.696E+05	9.953E+11	1.053E+12	2.312E+12	8.166E+08
2.300E+02	5.970E+05	1.984E+12	1.624E+12	3.140E+12	8,947E+08
2.300E+02	2.057E+05	9.565E+11	6.522E+11	1.719E+12	6 699E+08
2.500E+02	1.977E+05	6.449E+11	3 678E+11	1 207E+12	4 103E+08
2.5000102	1.724E+05	6 273 F + 11	2.630E+11	9 690F+11	4 2605+00
2.000E+02 2 700F+02	2.7240+03 8 586F±04	2585F+11	1 206F+11	5 668E+11	4.200E+00 2 576E:00
	5.5000+04 5.61/F:0/	1 5/05 11	0 0075110	J.000ETII / 500p.11	3.5706700
2.00000002	1 122 - 05	1 90/0-11	7 6020110	4.3236+11	2.9006+00
2.9006+02	1.125E+05		/.093E+10		3.1208+08
3.0000+02	1.1006+05		9.019E+10	3.911E+11 2 110m.11	2.7205+08
3.1006+02	0.123E+04	1.3996+11	0.7010+10		2.3996+08
3.2006+02	9.8025+04	1.3508+11	4.0686+10	3.0/18+11	2.1005+08
3.300E+02	1.682E+05	2.8/1E+11	1.2406+11	4.0956+11	2.2116+08
3.400E+02	1.5518+05	2.8546+11	9.984E+10	5.263E+11	1.6/28+08
3.500E+02	1.092E+05	1.496E+11	4.506E+10	3.922E+11	1.55/E+08
3.600E+02	1.188E+05	1.104E+11	5.584E+10	3.401E+11	1.443E+08
3.700E+02	1.568E+05	3.040E+11	1.486E+11	6.478E+11	1.331E+08
3.800E+02	9.581E+04	1.064E+11	3.409E+10	3.673E+11	1.026E+08
3.900E+02	7.460E+04	7.690E+10	3.154E+10	2.731E+11	1.351E+08
4.000E+02	7.700E+04	7.427E+10	3.257E+10	2.760E+11	2.230E+08
ISWP	EPOT				
1.000E+01	2.665E+08				
2.000E+01	2.305E+08				
3.000E+01	1.765E+08				
4.000E+01	1.669E+08				
5.000E+01	1.409E+08				
6.000E+01	1.216E+08				
7.000E+01	1.118E+08				
8.000E+01	1.173E+08				
9.000E+01	1.161E+08				
1.000E+02	1.097E+08				
1.100E+02	7.653E+07				
1.200E+02	6.935E+07				
1.300E+02	6.488E+07	·			
1.400E+02	6.097E+07				
1.500E+02	5.804E+07				
1.600E+02	5.598E+07				
1.700E+02	5.449E+07				
1.800E+02	5.442E+07				
1 900E+02	5.370E+07				
2.000E+02	5.768E+07				
2.100E+02	6.821E+07				
$2 200 F \pm 02$	8 6265+07				
2 3005+02	6 015F±07				
2.3000402	5 575F±07				
2.5000+02	5 297F±07				
2.5005+02	1 98/F±07				
2.000E+02 2 700E+02	5 203E+07				
2 8005+02	5.2055t07 5 2255±07				
2 9005402	2 941F±07				
	• • • • • • • • • • • • • • • • • • • •				

A 3-39

6.589E+07 3.000E+02 3.100E+02 6.721E+07 3.200E+02 6.683E+07 3.300E+02 7.162E+07 6.746E+07 3.400E+026.633E+07 3.500E+02 7.466E+07 3.600E+02 7.522E+07 3.700E+02 7.337E+07 3.800E+02 3.900E+02 7.351E+07 4.000E+02 7.428E+07 VARIABLE P1 **U1** V1 W1 H1 2.417E+01 2.552E+01 9.993E+002.490E+01 1.845E+01MINVAL= MAXVAL= 1.426E+012.965E+01 2.950E+01 3.001E+01 2.156E+01 VARIABLE EPOT 1.772E+01 MINVAL= 1.940E+01 MAXVAL= 0.90 + E HHH HHH H Η 0.80 +Ρ E н + 0.70 + E НН НН HH 0.60 +Е н нн U H 0.50 +E EEE E НH P WH PP Ρ 0.40 +W WW W HVH HP P PPW + 0.30 VV UW PW ΕV W HWHH WW W VP PP Ε 0.20 UW V V VEE VV W V E VVEE EEE EEEE EE W WWVW EEE EEWE 0.10 W ΕE V HHHU H+ 0.00 +P...+....W+...PW+.WEW+....+EEE.EE...V....+.H.VV . 4 • 5 .6 .7 .8 .9 1.0 0 .1 .2 .3 THE ABSCISSA IS ISWP. MIN = 1.00E + 01 MAX = 4.00E + 02DATA FOR RE-STARTS AND PLOTTING SAVED ON ARCA RUN NO. 1 ENDED AT ISWEEP= 400 AND ISTEP= 1 SATLIT RUN NUMBER = 1 RUN COMPLETED AT 14:28:58 ON TUESDAY, 27 JANUARY 1987 MACHINE-CLOCK TIME OF RUN = 2256 SECONDS. TIME/(VARIABLES*CELLS*TSTEPS*SWEEPS*ITS) = 7.520E-04NORMAL STOP REACHED IN PROGRAM

A 3 - 40