58 research outputs found

    Laboratory evaluation of hedmanite and lime modified asphalt concrete mixes

    Get PDF
    We prove the existence of large-data global-in-time weak solutions to an evolutionary PDE system describing flows of incompressible \emph{heat-conducting} viscoelastic rate-type fluids with stress-diffusion, subject to a stick-slip boundary condition for the velocity and a homogeneous Neumann boundary condition for the extra stress tensor. In the introductory section we develop the thermodynamic foundations of the proposed model, and we document the role of thermodynamics in obtaining critical structural relations between the quantities of interest. These structural relations are then exploited in the mathematical analysis of the governing equations. In particular, the definition of weak solution is motivated by the thermodynamic basis of the model. The extra stress tensor describing the elastic response of the fluid is in our case purely spherical, which is a simplification from the physical point of view. The model nevertheless exhibits features that require novel mathematical ideas in order to deal with the technically complex structure of the associated internal energy and the more complicated forms of the corresponding entropy and energy fluxes. The paper provides the first rigorous proof of the existence of large-data global-in-time weak solutions to the governing equations for \emph{coupled thermo-mechanical processes} in viscoelastic rate-type fluids

    Mathematical Models of Incompressible Fluids as Singular Limits of Complete Fluid Systems

    Get PDF
    A rigorous justification of several well-known mathematical models of incompressible fluid flows can be given in terms of singular limits of the scaled Navier-Stokes-Fourier system, where some of the characteristic numbers become small or large enough. We discuss the problem in the framework of global-in-time solutions for both the primitive and the target system. © 2010 Springer Basel AG

    Analysis and approximation of a strain-limiting nonlinear elastic model

    No full text
    Elastic solids with strain-limiting response to external loading represent an interesting class of material models, capable of describing stress concentration at strains with small magnitude. A theoretical justification of this class of models comes naturally from implicit constitutive theory. We investigate mathematical properties of static deformations for such strain-limiting nonlinear models. Focusing on the spatially periodic setting, we obtain results concerning existence, uniqueness and regularity of weak solutions, and existence of renormalized solutions for the full range of the positive scalar parameter featuring in the model. These solutions are constructed via a Fourier spectral method. We formulate a sufficient condition for ensuring that a renormalized solution is in fact a weak solution, and we comment on the extension of the analysis to nonperiodic boundary-value problems

    On implicit constitutive theories

    Get PDF
    summary:In classical constitutive models such as the Navier-Stokes fluid model, and the Hookean or neo-Hookean solid models, the stress is given explicitly in terms of kinematical quantities. Models for viscoelastic and inelastic responses on the other hand are usually implicit relationships between the stress and the kinematical quantities. Another class of problems wherein it would be natural to develop implicit constitutive theories, though seldom resorted to, are models for bodies that are constrained. In general, for such materials the material moduli that characterize the extra stress could depend on the constraint reaction. (E.g., in an incompressible fluid, the viscosity could depend on the constraint reaction associated with the constraint of incompressibility. In the linear case, this would be the pressure.) Here we discuss such implicit constitutive theories. We also discuss a class of bodies described by an implicit constitutive relation for the specific Helmholtz potential that depends on both the stress and strain, and which does not dissipate in any admissible process. The stress in such a material is not derivable from a potential, i.e., the body is not hyperelastic (Green elastic)

    On elastic solids with limiting small strain: modelling and analysis

    No full text
    In order to understand nonlinear responses of materials to external stimuli of different sort, be they of mechanical, thermal, electrical, magnetic, or of optical nature, it is useful to have at one's disposal a broad spectrum of models that have the capacity to describe in mathematical terms a wide range of material behavior. It is advantageous if such a framework stems from a simple and elegant general idea. Implicit constitutive theory of materials provides such a framework: while being built upon simple ideas, it is able to capture experimental observations with the minimum number of physical quantities involved. It also provides theoretical justification in the full three-dimensional setting for various models that were previously proposed in an ad hoc manner. From the perspective of the theory of nonlinear partial differential equations, implicit constitutive theory leads to new classes of challenging mathematical problems. This study focuses on implicit constitutive models for elastic solids in general, and on its subclass consisting of elastic solids with limiting small strain. After introducing the basic concepts of implicit constitutive theory, we provide an overview of results concerning modeling within the framework of continuum mechanics. We then concentrate on the mathematical analysis of relevant boundary-value problems associated with models with limiting small strain, and we present the first analytical result concerning the existence of weak solutions in general three-dimensional domains
    corecore