550 research outputs found

    Field-driven phase transitions in a quasi-two-dimensional quantum antiferromagnet

    Full text link
    We report magnetic susceptibility, specific heat, and neutron scattering measurements as a function of applied magnetic field and temperature to characterize the S=1/2S=1/2 quasi-two-dimensional frustrated magnet piperazinium hexachlorodicuprate (PHCC). The experiments reveal four distinct phases. At low temperatures and fields the material forms a quantum paramagnet with a 1 meV singlet triplet gap and a magnon bandwidth of 1.7 meV. The singlet state involves multiple spin pairs some of which have negative ground state bond energies. Increasing the field at low temperatures induces three dimensional long range antiferromagnetic order at 7.5 Tesla through a continuous phase transition that can be described as magnon Bose-Einstein condensation. The phase transition to a fully polarized ferromagnetic state occurs at 37 Tesla. The ordered antiferromagnetic phase is surrounded by a renormalized classical regime. The crossover to this phase from the quantum paramagnet is marked by a distinct anomaly in the magnetic susceptibility which coincides with closure of the finite temperature singlet-triplet pseudo gap. The phase boundary between the quantum paramagnet and the Bose-Einstein condensate features a finite temperature minimum at T=0.2T=0.2 K, which may be associated with coupling to nuclear spin or lattice degrees of freedom close to quantum criticality.Comment: Submitted to New Journal of Physic

    Phase diagram and spin Hamiltonian of weakly-coupled anisotropic S=1/2 chains in CuCl2*2((CD3)2SO)

    Full text link
    Field-dependent specific heat and neutron scattering measurements were used to explore the antiferromagnetic S=1/2 chain compound CuCl2 * 2((CD3)2SO). At zero field the system acquires magnetic long-range order below TN=0.93K with an ordered moment of 0.44muB. An external field along the b-axis strengthens the zero-field magnetic order, while fields along the a- and c-axes lead to a collapse of the exchange stabilized order at mu0 Hc=6T and mu0 Hc=3.5T, respectively (for T=0.65K) and the formation of an energy gap in the excitation spectrum. We relate the field-induced gap to the presence of a staggered g-tensor and Dzyaloshinskii-Moriya interactions, which lead to effective staggered fields for magnetic fields applied along the a- and c-axes. Competition between anisotropy, inter-chain interactions and staggered fields leads to a succession of three phases as a function of field applied along the c-axis. For fields greater than mu0 Hc, we find a magnetic structure that reflects the symmetry of the staggered fields. The critical exponent, beta, of the temperature driven phase transitions are indistinguishable from those of the three-dimensional Heisenberg magnet, while measurements for transitions driven by quantum fluctuations produce larger values of beta.Comment: revtex 12 pages, 11 figure

    Absence of Conventional Spin-Glass Transition in the Ising Dipolar System LiHo_xY_{1-x}F_4

    Full text link
    The magnetic properties of single crystals of LiHo_xY_{1-x}F_4 with x=16.5% and x=4.5% were recorded down to 35 mK using a micro-SQUID magnetometer. While this system is considered as the archetypal quantum spin glass, the detailed analysis of our magnetization data indicates the absence of a phase transition, not only in a transverse applied magnetic field, but also without field. A zero-Kelvin phase transition is also unlikely, as the magnetization seems to follow a non-critical exponential dependence on the temperature. Our analysis thus unmasks the true, short-ranged nature of the magnetic properties of the LiHo_xY_{1-x}F_4 system, validating recent theoretical investigations suggesting the lack of phase transition in this system.Comment: 5 pages, 4 figure

    Multiferroicity in the generic easy-plane triangular lattice antiferromagnet RbFe(MoO4)2

    Full text link
    RbFe(MoO4)2 is a quasi-two-dimensional (quasi-2D) triangular lattice antiferromagnet (TLA) that displays a zero-field magnetically-driven multiferroic phase with a chiral spin structure. By inelastic neutron scattering, we determine quantitatively the spin Hamiltonian. We show that the easy-plane anisotropy is nearly 1/3 of the dominant spin exchange, making RbFe(MoO4)2 an excellent system for studying the physics of the model 2D easy-plane TLA. Our measurements demonstrate magnetic-field induced fluctuations in this material to stabilize the generic finite-field phases of the 2D XY TLA. We further explain how Dzyaloshinskii-Moriya interactions can generate ferroelectricity only in the zero field phase. Our conclusion is that multiferroicity in RbFe(MoO4)2, and its absence at high fields, results from the generic properties of the 2D XY TLA.Comment: 5 pages, 5 figures, accepted in PRB as a Rapid Communicatio

    Quantum Criticality in an Organic Magnet

    Get PDF
    Exchange interactions between S=12S=\frac{1}{2} sites in piperazinium hexachlorodicuprate produce a frustrated bilayer magnet with a singlet ground state. We have determined the field-temperature phase diagram by high field magnetization and neutron scattering experiments. There are two quantum critical points: Hc1=7.5H_{c1}=7.5 T separates a quantum paramagnet phase from a three dimensional, antiferromagnetically-ordered state while Hc2=37H_{c2}=37 T marks the onset of a fully polarized state. The ordered phase, which we describe as a magnon Bose-Einstein condensate (BEC), is embedded in a quantum critical regime with short range correlations. A low temperature anomaly in the BEC phase boundary indicates that additional low energy features of the material become important near Hc1H_{c1}.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Lett. Replaced original text with additional conten

    The S=1/2 chain in a staggered field: High-energy bound-spinon state and the effects of a discrete lattice

    Full text link
    We report an experimental and theoretical study of the antiferromagnetic S=1/2 chain subject to uniform and staggered fields. Using inelastic neutron scattering, we observe a novel bound-spinon state at high energies in the linear chain compound CuCl2 * 2((CD3)2SO). The excitation is explained with a mean-field theory of interacting S=1/2 fermions and arises from the opening of a gap at the Fermi surface due to confining spinon interactions. The mean-field model also describes the wave-vector dependence of the bound-spinon states, particularly in regions where effects of the discrete lattice are important. We calculate the dynamic structure factor using exact diagonalization of finite length chains, obtaining excellent agreement with the experiments.Comment: 16 pages, 7 figures, accepted by Phys. Rev.
    corecore