52 research outputs found

    Deregulated splicing is a major mechanism of RNA-induced toxicity in Huntington's disease

    Get PDF
    Huntington's disease (HD) is caused by an expanded CAG repeat in the huntingtin (HTT) gene, translating into an elongated polyglutamine stretch. In addition to the neurotoxic mutant HTT protein, the mutant CAG repeat RNA can exert toxic functions by trapping RNA-binding proteins. While few examples of proteins that aberrantly bind to mutant HTT RNA and execute abnormal function in conjunction with the CAG repeat RNA have been described, an unbiased approach to identify the interactome of mutant HTT RNA is missing. Here, we describe the analysis of proteins that preferentially bind mutant HTT RNA using a mass spectrometry approach. We show that (I) the majority of proteins captured by mutant HTT RNA belong to the spliceosome pathway, (II) expression of mutant CAG repeat RNA induces mis-splicing in a HD cell model, (III) overexpression of one of the splice factors trapped by mutant HTT ameliorates the HD phenotype in a fly model and (VI) deregulated splicing occurs in human HD brain. Our data suggest that deregulated splicing is a prominent mechanism of RNA-induced toxicity in HD

    M1-linked ubiquitination by LUBEL is required for inflammatory responses to oral infection in Drosophila

    Get PDF
    Post-translational modifications such as ubiquitination play a key role in regulation of inflammatory nuclear factor-κB (NF-κB) signalling. The Drosophila IκB kinase γ (IKKγ) Kenny is a central regulator of the Drosophila Imd pathway responsible for activation of the NF-κB Relish. We found the Drosophila E3 ligase and HOIL-1L interacting protein (HOIP) orthologue linear ubiquitin E3 ligase (LUBEL) to catalyse formation of M1-linked linear ubiquitin (M1-Ub) chains in flies in a signal-dependent manner upon bacterial infection. Upon activation of the Imd pathway, LUBEL modifies Kenny with M1-Ub chains. Interestingly, the LUBEL-mediated M1-Ub chains seem to be targeted both directly to Kenny and to K63-linked ubiquitin chains conjugated to Kenny by DIAP2. This suggests that DIAP2 and LUBEL work together to promote Kenny-mediated activation of Relish. We found LUBEL-mediated M1-Ub chain formation to be required for flies to survive oral infection with Gram-negative bacteria, for activation of Relish-mediated expression of antimicrobial peptide genes and for pathogen clearance during oral infection. Interestingly, LUBEL is not required for mounting an immune response against systemic infection, as Relish-mediated antimicrobial peptide genes can be expressed in the absence of LUBEL during septic injury. Finally, transgenic induction of LUBEL-mediated M1-Ub drives expression of antimicrobial peptide genes and hyperplasia in the midgut in the absence of infection. This suggests that M1-Ub chains are important for Imd signalling and immune responses in the intestinal epithelia, and that enhanced M1-Ub chain formation is able to drive chronic intestinal inflammation in flies

    Trim17, novel E3 ubiquitin-ligase, initiates neuronal apoptosis

    Get PDF
    Accumulating data indicate that the ubiquitin-proteasome system controls apoptosis by regulating the level and the function of key regulatory proteins. In this study, we identified Trim17, a member of the TRIM/RBCC protein family, as one of the critical E3 ubiquitin ligases involved in the control of neuronal apoptosis upstream of mitochondria. We show that expression of Trim17 is increased both at the mRNA and protein level in several in vitro models of transcription-dependent neuronal apoptosis. Expression of Trim17 is controlled by the PI3K/Akt/GSK3 pathway in cerebellar granule neurons (CGN). Moreover, the Trim17 protein is expressed in vivo, in apoptotic neurons that naturally die during post-natal cerebellar development. Overexpression of active Trim17 in primary CGN was sufficient to induce the intrinsic pathway of apoptosis in survival conditions. This pro-apoptotic effect was abolished in Bax(-/-) neurons and depended on the E3 activity of Trim17 conferred by its RING domain. Furthermore, knock-down of endogenous Trim17 and overexpression of dominant-negative mutants of Trim17 blocked trophic factor withdrawal-induced apoptosis both in CGN and in sympathetic neurons. Collectively, our data are the first to assign a cellular function to Trim17 by showing that its E3 activity is both necessary and sufficient for the initiation of neuronal apoptosis. Cell Death and Differentiation (2010) 17, 1928-1941; doi: 10.1038/cdd.2010.73; published online 18 June 201

    Contribution of Caspase(s) to the Cell Cycle Regulation at Mitotic Phase

    Get PDF
    Caspases have been suggested to contribute to not only apoptosis regulation but also non-apoptotic cellular phenomena. Recently, we have reported the involvement of caspase-7 to the cell cycle progression at mitotic phase by knockdown of caspase-7 using small interfering RNAs and short hairpin RNA. Here we showed that chemically synthesized broad-spectrum caspase inhibitors, which have been used to suppress apoptosis, prevented the cell proliferation in a dose-dependent manner, and that the subtype-specific peptide-based caspase inhibitor for caspase-3 and -7, but not for caspase-9, inhibited cell proliferation. It was also indicated that the BIR2 domain of X-linked inhibitor of apoptosis protein, functioning as an inhibitor for caspase-3 and -7, but not the BIR3 domain which plays as a caspase-9 inhibitor, induced cell cycle arrest. Furthermore, flow cytometry revealed that the cells treated with caspase inhibitors arrested at G2/M phase. By using HeLa.S-Fucci (fluorescent ubiquitination-based cell cycle indicator) cells, the prevention of the cell proliferation by caspase inhibitors induced cell cycle arrest at mitotic phase accompanying the accumulation of the substrates for APC/C, suggesting the impairment of the APC/C activity at the transition from M to G1 phases. These results indicate that caspase(s) contribute to the cell cycle regulation at mitotic phase

    Withanolides-Induced Breast Cancer Cell Death Is Correlated with Their Ability to Inhibit Heat Protein 90

    Get PDF
    Withanolides are a large group of steroidal lactones found in Solanaceae plants that exhibit potential anticancer activities. We have previously demonstrated that a withanolide, tubocapsenolide A, induced cycle arrest and apoptosis in human breast cancer cells, which was associated with the inhibition of heat shock protein 90 (Hsp90). To investigate whether other withanolides are also capable of inhibiting Hsp90 and to analyze the structure-activity relationships, nine withanolides with different structural properties were tested in human breast cancer cells MDA-MB-231 and MCF-7 in the present study. Our data show that the 2,3-unsaturated double bond-containing withanolides inhibited Hsp90 function, as evidenced by selective depletion of Hsp90 client proteins and induction of Hsp70. The inhibitory effect of the withanolides on Hsp90 chaperone activity was further confirmed using in vivo heat shock luciferase activity recovery assays. Importantly, Hsp90 inhibition by the withanolides was correlated with their ability to induce cancer cell death. In addition, the withanolides reduced constitutive NF-κB activation by depleting IκB kinase complex (IKK) through inhibition of Hsp90. In estrogen receptor (ER)-positive MCF-7 cells, the withanolides also reduced the expression of ER, and this may be partly due to Hsp90 inhibition. Taken together, our results suggest that Hsp90 inhibition is a general feature of cytotoxic withanolides and plays an important role in their anticancer activity

    RNF185, a Novel Mitochondrial Ubiquitin E3 Ligase, Regulates Autophagy through Interaction with BNIP1

    Get PDF
    Autophagy is an evolutionarily conserved catabolic process that allows recycling of cytoplasmic organelles, such as mitochondria, to offer a bioenergetically efficient pathway for cell survival. Considerable progress has been made in characterizing mitochondrial autophagy. However, the dedicated ubiquitin E3 ligases targeting mitochondria for autophagy have not been revealed. Here we show that human RNF185 is a mitochondrial ubiquitin E3 ligase that regulates selective mitochondrial autophagy in cultured cells. The two C-terminal transmembrane domains of human RNF185 mediate its localization to mitochondrial outer membrane. RNF185 stimulates LC3II accumulation and the formation of autophagolysosomes in human cell lines. We further identified the Bcl-2 family protein BNIP1 as one of the substrates for RNF185. Human BNIP1 colocalizes with RNF185 at mitochondria and is polyubiquitinated by RNF185 through K63-based ubiquitin linkage in vivo. The polyubiquitinated BNIP1 is capable of recruiting autophagy receptor p62, which simultaneously binds both ubiquitin and LC3 to link ubiquitination and autophagy. Our study might reveal a novel RNF185-mediated mechanism for modulating mitochondrial homeostasis through autophagy

    Drosophila IAP1-Mediated Ubiquitylation Controls Activation of the Initiator Caspase DRONC Independent of Protein Degradation

    Get PDF
    Ubiquitylation targets proteins for proteasome-mediated degradation and plays important roles in many biological processes including apoptosis. However, non-proteolytic functions of ubiquitylation are also known. In Drosophila, the inhibitor of apoptosis protein 1 (DIAP1) is known to ubiquitylate the initiator caspase DRONC in vitro. Because DRONC protein accumulates in diap1 mutant cells that are kept alive by caspase inhibition (“undead” cells), it is thought that DIAP1-mediated ubiquitylation causes proteasomal degradation of DRONC, protecting cells from apoptosis. However, contrary to this model, we show here that DIAP1-mediated ubiquitylation does not trigger proteasomal degradation of full-length DRONC, but serves a non-proteolytic function. Our data suggest that DIAP1-mediated ubiquitylation blocks processing and activation of DRONC. Interestingly, while full-length DRONC is not subject to DIAP1-induced degradation, once it is processed and activated it has reduced protein stability. Finally, we show that DRONC protein accumulates in “undead” cells due to increased transcription of dronc in these cells. These data refine current models of caspase regulation by IAPs

    Self-prioritization and perceptual matching: The effects of temporal construal.

    Get PDF
    Recent research has revealed that self-referential processing enhances perceptual judgments - the so-called self-prioritization effect. The extent and origin of this effect remains unknown, however. Noting the multifaceted nature of the self, here we hypothesized that temporal influences on self-construal (i.e., past/future-self continuity) may serve as an important determinant of stimulus prioritization. Specifically, as representations of the self increase in abstraction as a function of temporal distance (i.e., distance from now), self-prioritization may only emerge when stimuli are associated with the current self. The results of three experiments supported this prediction. Self-relevance only enhanced performance in a standard perceptual-matching task when stimuli (i.e., geometric shapes) were connected with the current self; representations of the self in the future (Expts. 1 & 2) and past (Expt. 3) failed to facilitate decision making. To identify the processes underlying task performance, data were interrogated using a hierarchical drift diffusion model (HDDM) approach. Results of these analyses revealed that self-prioritization was underpinned by a stimulus bias (i.e., rate of information uptake). Collectively, these findings elucidate when and how self-relevance influences decisional processing

    Requirement of Hsp90 activity for IkappaB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-kappaB activation

    No full text
    The molecular chaperone Hsp90 affects the function and fate of a number of signaling molecules. We have investigated the Hsp90 requirement for constitutive and inducible activity of the IκB kinase (IKK) complex and of NF-κB. Inhibition by the Hsp90 ATPase inhibitors, geldanamycin (GA) and radicicol (RC), revealed that Hsp90 controls IKKs at two levels, inducibility of enzymatic activity and biogenesis, which can be discriminated by short- and long-time GA incubation, respectively. Short-time inhibition of Hsp90 resulted in impaired IKK kinase activation by TNF{alpha}, IL-1{beta} or phorbolester PMA. Furthermore, GA inhibited constitutive activation of IKK and NF-κB in Hodgkin's lymphoma cells. Hsp90 function was also required for trans- and autophosphorylation of transfected IKKβ. GA exposure for several hours resulted in a downmodulation of IKK complex {alpha}, {beta} and {gamma} subunits to various extent. Proteasome inhibition interfered with GA mediated IKK depletion and Hsp90 inhibition induced polyubiquitination of IKK{alpha} and {beta} during protein synthesis. In fact, GA blocked biogenesis of IKKα and IKKβ but did not interfere with post-translational turnover. Together, these results define a dual requirement for Hsp90 as a regulator of NF-κB signaling by its general involvement in IKK activation and by its role in IKK homeostasis
    corecore