17 research outputs found

    Carbonic anhydrase III (Car3) is not required for fatty acid synthesis and does not protect against high-fat diet induced obesity in mice

    Get PDF
    Carbonic anhydrases are a family of enzymes that catalyze the reversible condensation of water and carbon dioxide to carbonic acid, which spontaneously dissociates to bicarbonate. Carbonic anhydrase III (Car3) is nutritionally regulated at both the mRNA and protein level. It is highly enriched in tissues that synthesize and/or store fat: liver, white adipose tissue, brown adipose tissue, and skeletal muscle. Previous characterization of Car3 knockout mice focused on mice fed standard diets, not high-fat diets that significantly alter the tissues that highly express Car3. We observed lower protein levels of Car3 in high-fat diet fed mice treated with niclosamide, a drug published to improve fatty liver symptoms in mice. However, it is unknown if Car3 is simply a biomarker reflecting lipid accumulation or whether it has a functional role in regulating lipid metabolism. We focused our in vitro studies toward metabolic pathways that require bicarbonate. To further determine the role of Car3 in metabolism, we measured de novo fatty acid synthesis with in vitro radiolabeled experiments and examined metabolic biomarkers in Car3 knockout and wild type mice fed high-fat diet. Specifically, we analyzed body weight, body composition, metabolic rate, insulin resistance, serum and tissue triglycerides. Our results indicate that Car3 is not required for de novo lipogenesis, and Car3 knockout mice fed high-fat diet do not have significant differences in responses to various diets to wild type mice

    Government Learning

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy.

    No full text
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy.

    No full text
    corecore