145 research outputs found

    Evaluation of aircraft microwave data for locating zones for well stimulation and enhanced gas recovery

    Get PDF
    Imaging radar was evaluated as an adjunct to conventional petroleum exploration techniques, especially linear mapping. Linear features were mapped from several remote sensor data sources including stereo photography, enhanced LANDSAT imagery, SLAR radar imagery, enhanced SAR radar imagery, and SAR radar/LANDSAT combinations. Linear feature maps were compared with surface joint data, subsurface and geophysical data, and gas production in the Arkansas part of the Arkoma basin. The best LANDSAT enhanced product for linear detection was found to be a winter scene, band 7, uniform distribution stretch. Of the individual SAR data products, the VH (cross polarized) SAR radar mosaic provides for detection of most linears; however, none of the SAR enhancements is significantly better than the others. Radar/LANDSAT merges may provide better linear detection than a single sensor mapping mode, but because of operator variability, the results are inconclusive. Radar/LANDSAT combinations appear promising as an optimum linear mapping technique, if the advantages and disadvantages of each remote sensor are considered

    Pioglitazone Induces Apoptosis of Macrophages in Human Adipose Tissue

    Get PDF
    Metabolic syndrome and type 2 diabetes mellitus are associated with an increased number of macrophage cells that infiltrate white adipose tissue (WAT). Previously, we demonstrated that the treatment of subjects with impaired glucose tolerance (IGT) with the peroxisome proliferator-activated receptor γ (PPARγ) agonist pioglitazone resulted in a decrease in macrophage number in adipose tissue. Here, adipose tissue samples from IGT subjects treated with pioglitazone were examined for apoptosis with terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. TUNEL-positive cells were identified, and there was a significant 42% increase in TUNEL-positive cells following pioglitazone treatment. Overlay experiments with anti-CD68 antibody demonstrated that most of theTUNEL-positive cellsweremacrophages.To determine whether macrophage apoptosis was a direct or indirect effect of pioglitazone treatment, human THP1 cells were treated with pioglitazone in vitro, demonstrating increased TUNEL staining in a dose- and time-dependent manner. Furthermore, the appearance of the active proteolytic subunits of caspase-3 and caspase-9 were detected in cell lysate from THP1 cells and also increased in a dose- and time-dependent manner following pioglitazone treatment. Pretreatment with a PPARγ inhibitor, GW9662, prevented pioglitazone induction of the apoptotic pathway in THP1 cells. Differentiated human adipocytes did not show any significant increase in apoptosis after treatment in vitro with piolgitazone. These findings indicate that PPARγ has distinct functions in different cell types in WAT, such that pioglitazone reduces macrophage infiltration by inducing apoptotic cell death specifically in macrophages through PPARγ activation

    Exercise and Omega-3 Polyunsaturated Fatty Acid Supplementation for the Treatment of Hepatic Steatosis in Hyperphagic OLETF Rats

    Get PDF
    Background and Aims. This study examined if exercise and omega-3 fatty acid (n3PUFA) supplementation is an effective treatment for hepatic steatosis in obese, hyperphagic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Methods. Male OLETF rats were divided into 4 groups (n=8/group): (1) remained sedentary (SED), (2) access to running wheels; (EX) (3) a diet supplemented with 3% of energy from fish oil (n3PUFA-SED); and (4) n3PUFA supplementation plus EX (n3PUFA+EX). The 8 week treatments began at 13 weeks, when hepatic steatosis is present in OLETF-SED rats. Results. EX alone lowered hepatic triglyceride (TAG) while, in contrast, n3PUFAs failed to lower hepatic TAG and blunted the ability of EX to decrease hepatic TAG levels in n3PUFAs+EX. Insulin sensitivity was improved in EX animals, to a lesser extent in n3PUFA+EX rats, and did not differ between n3PUFA-SED and SED rats. Only the EX group displayed higher complete hepatic fatty acid oxidation (FAO) to CO2 and carnitine palmitoyl transferase-1 activity. EX also lowered hepatic fatty acid synthase protein while both EX and n3PUFA+EX decreased stearoyl CoA desaturase-1 protein. Conclusions. Exercise lowers hepatic steatosis through increased complete hepatic FAO, insulin sensitivity, and reduced expression of de novo fatty acid synthesis proteins while n3PUFAs had no effect

    Lipin Expression Is Attenuated in Adipose Tissue of Insulin-Resistant Human Subjects and Increases With Peroxisome Proliferator-Activated Receptor γ Activation

    Get PDF
    Lipin-α and -β are the alternatively spliced gene products of the Lpin1 gene, whose product lipin is required for adipocyte differentiation. Lipin deficiency causes lipodystrophy, fatty liver, and insulin resistance in mice, whereas adipose tissue lipin overexpression results in increased adiposity but improved insulin sensitivity. To assess lipin expression and its relation to insulin resistance in humans, we examined lipin-α and -β mRNA levels in subjects with normal or impaired glucose tolerance. We found higher expression levels of both lipin isoforms in lean, insulin-sensitive subjects. When compared with normal glucose-tolerant subjects, individuals with impaired glucose tolerance were more insulin resistant, demonstrated higher levels of intramyocellular lipids (IMCLs), and expressed ∼50% lower levels of lipin-α and -β. In addition, there was a strong inverse correlation between adipose tissue lipin expression and muscle IMCLs but no evidence for an increase in muscle lipid oxidation. After treatment of the impaired glucose-tolerant subjects with insulin sensitizers for 10 weeks, pioglitazone (but not metformin) resulted in a 60% increase in the insulin sensitivity index (Si) and a 32% decrease in IMCLs (both P \u3c 0.01), along with an increase in lipin-β (but not lipin-α) expression by 200% (P \u3c 0.005). Lipin expression in skeletal muscle, however, was not related to obesity or insulin resistance. Hence, high adipose tissue lipin expression is found in insulin-sensitive subjects, and lipin-β expression increases following treatment with pioglitazone. These results suggest that increased adipogenesis and/or lipogenesis in subcutaneous fat, mediated by the LPIN1 gene, may prevent lipotoxicity in muscle, leading to improved insulin sensitivity

    Expression of CD68 and Macrophage Chemoattractant Protein-1 Genes in Human Adipose and Muscle Tissues: Association with Cytokine Expression, Insulin Resistance, and Reduction by Pioglitazone

    Get PDF
    To examine the role of adipose-resident macrophages in insulin resistance, we examined the gene expression of CD68, a macrophage marker, along with macrophage chemoattractant protein-1 (MCP-1) in human subcutaneous adipose tissue using real-time RT-PCR. Both CD68 and MCP-1 mRNAs were expressed in human adipose tissue, primarily in the stromal vascular fraction. When measured in the adipose tissue from subjects with normal glucose tolerance, covering a wide range of BMI (21-51 kg/m2) and insulin sensitivity (SI) (0.6-8.0 × 10-4 min-1 · μU-1 · ml-1), CD68 mRNA abundance, which correlated with the number of CD68-positive cells by immunohistochemistry, tended to increase with BMI but was not statistically significant. However, there was a significant inverse relation between CD68 mRNA and SI (r = -0.55, P = 0.02). In addition, there was a strong positive relationship among adipose tissue CD68 mRNA, tumor necrosis factor-α (TNF-α) secretion in vitro (r = 0.79, P \u3c 0.005), and plasma interleukin-6 (r = 0.67, P \u3c 0.005). To determine whether improving SI in subjects with impaired glucose tolerance (IGT) was associated with decreased CD68 expression, IGT subjects were treated for 10 weeks with pioglitazone or metformin. Pioglitazone increased S1 by 60% and in the same subjects reduced both CD68 and MCP-1 mRNAs by \u3e50%. Furthermore, pioglitazone resulted in a reduction in the number of CD68-positive cells in adipose tissue and reduced plasma TNF-α. Metformin had no effect on any of these measures. Thus, treatment with pioglitazone reduces expression of CD68 and MCP-1 in adipose tissue, apparently by reducing macrophage numbers, resulting in reduced inflammatory cytokine production and improvement in SI

    Human Visfatin Expression: Relationship to Insulin Sensitivity, Intramyocellular Lipids, and Inflammation

    Get PDF
    Context: Visfatin (VF) is a recently described adipokine preferentially secreted by visceral adipose tissue (VAT) with insulin mimetic properties. Objective: The aim of this study was to examine the association of VF with insulin sensitivity, intramyocellular lipids (IMCL), and inflammation in humans. Design and Patients: VF mRNA was examined in paired samples of VAT and abdominal sc adipose tissue (SAT) obtained from subjects undergoing surgery. Plasma VF and VF mRNA was also examined in SAT and muscle tissue, obtained by biopsy from well-characterized subjects with normal or impaired glucose tolerance, with a wide range in body mass index (BMI) and insulin sensitivity (SI). Setting: The study was conducted at a University Hospital and General Clinical Research Center. Intervention: SI was measured, and fat and muscle biopsies were performed. In impaired glucose tolerance subjects, these procedures were performed before and after treatment with pioglitazone or metformin. Main Outcome Measures: We measured the relationship between VF and obesity, SI, adipose tissue inflammation, IMCL, and response to insulin sensitizers. Results: No significant difference in VF mRNA was seen between SAT and VAT depots. VAT VF mRNA associated positively with BMI, whereas SAT VF mRNA decreased with BMI. SAT VF correlated positively with SI, and the association of SAT VF mRNA with SI was independent of BMI. IMCL and markers of inflammation (adipose CD68 and plasma TNFα) were negatively associated with SAT VF. Impaired glucose tolerance subjects treated with pioglitazone showed no change in SAT VF mRNA despite a significant increase in SI. Plasma VF and muscle VF mRNA did not correlate with BMI or SI or IMCL, and there was no change in muscle VF with either pioglitazone or metformin treatments. Conclusion: SAT VF is highly expressed in lean, more insulinsensitive subjects and is attenuated in subjects with high IMCL, low SI, and high levels of inflammatory markers. VAT VF and SAT VF are regulated oppositely with BMI

    Retinol Binding Protein 4 Expression in Humans: Relationship to Insulin Resistance, Inflammation, and Response to Pioglitazone

    Get PDF
    Context: Retinol binding protein 4 (RBP4) was recently found to be expressed and secreted by adipose tissue, and was strongly associated with insulin resistance. Objective: The aim was to determine the relationship between RBP4 and obesity, insulin resistance, and other markers of insulin resistance in humans. Design and Patients: RBP4 mRNA levels in adipose tissue and muscle of nondiabetic human subjects with either normal or impaired glucose tolerance (IGT) were studied, along with plasma RBP4. RBP4 gene expression was also measured in adipose tissue fractions, and from visceral and sc adipose tissue (SAT) from surgical patients. Setting: The study was conducted at University Hospital and General Clinical Research Center. Intervention: Insulin sensitivity (SI) was measured, and fat and muscle biopsies were performed. In IGT subjects, these procedures were performed before and after treatment with metformin or pioglitazone. Main Outcome Measures: The relationship between RBP4 expression and obesity, SI, adipose tissue inflammation, and intramyocellular lipid level, and response to insulin sensitizers was measured. Results: RBP4 was expressed predominantly from the adipocyte fraction of SAT. Although SAT RBP4 expression and the plasma RBP4 level demonstrated no significant relationship with body mass index or SI, there was a strong positive correlation between RBP4 mRNA and adipose inflammation (monocyte chemoattractant protein-1 and CD68), and glucose transporter 4 mRNA. Treatment of IGT subjects with pioglitazone resulted in an increase in SI and an increase in RBP4 gene expression in both adipose tissue and muscle, but not in plasma RBP4 level, and the in vitro treatment of cultured adipocytes with pioglitazone yielded a similar increase in RBP4 mRNA. Conclusions: RBP4 gene expression in humans is associated with inflammatory markers, but not with insulin resistance. The increase in RBP4 mRNA after pioglitazone treatment is unusual, suggesting a complex regulation of this novel adipokine

    Cellularity and Adipogenic Profile of the Abdominal Subcutaneous Adipose Tissue From Obese Adolescents: Association With Insulin Resistance and Hepatic Steatosis

    Get PDF
    We explored whether the distribution of adipose cell size, the estimated total number of adipose cells, and the expression of adipogenic genes in subcutaneous adipose tissue are linked to the phenotype of high visceral and low subcutaneous fat depots in obese adolescents. A total of 38 adolescents with similar degrees of obesity agreed to have a subcutaneous periumbilical adipose tissue biopsy, in addition to metabolic (oral glucose tolerance test and hyperinsulinemic euglycemic clamp) and imaging studies (MRI, DEXA, (1)H-NMR). Subcutaneous periumbilical adipose cell-size distribution and the estimated total number of subcutaneous adipose cells were obtained from tissue biopsy samples fixed in osmium tetroxide and analyzed by Beckman Coulter Multisizer. The adipogenic capacity was measured by Affymetrix GeneChip and quantitative RT-PCR. Subjects were divided into two groups: high versus low ratio of visceral to visceral + subcutaneous fat (VAT/[VAT+SAT]). The cell-size distribution curves were significantly different between the high and low VAT/(VAT+SAT) groups, even after adjusting for age, sex, and ethnicity (MANOVA P = 0.035). Surprisingly, the fraction of large adipocytes was significantly lower (P <0.01) in the group with high VAT/(VAT+SAT), along with the estimated total number of large adipose cells (P <0.05), while the mean diameter was increased (P <0.01). From the microarray analyses emerged a lower expression of lipogenesis/adipogenesis markers (sterol regulatory element binding protein-1, acetyl-CoA carboxylase, fatty acid synthase) in the group with high VAT/(VAT+SAT), which was confirmed by RT-PCR. A reduced lipo-/adipogenic capacity, fraction, and estimated number of large subcutaneous adipocytes may contribute to the abnormal distribution of abdominal fat and hepatic steatosis, as well as to insulin resistance in obese adolescent

    A Gestational High Protein Diet Affects the Abundance of Muscle Transcripts Related to Cell Cycle Regulation throughout Development in Porcine Progeny

    Get PDF
    BACKGROUND: In various animal models pregnancy diets have been shown to affect offspring phenotype. Indeed, the underlying programming of development is associated with modulations in birth weight, body composition, and continual diet-dependent modifications of offspring metabolism until adulthood, producing the hypothesis that the offspring's transcriptome is permanently altered depending on maternal diet. METHODOLOGY/PRINCIPAL FINDINGS: To assess alterations of the offspring's transcriptome due to gestational protein supply, German Landrace sows were fed isoenergetic diets containing protein levels of either 30% (high protein--HP) or 12% (adequate protein--AP) throughout their pregnancy. Offspring muscle tissue (M. longissimus dorsi) was collected at 94 days post conception (dpc), and 1, 28, and 188 days post natum (dpn) for use with Affymetrix GeneChip Porcine Genome Arrays and subsequent statistical and Ingenuity pathway analyses. Numerous transcripts were found to have altered abundance at 94 dpc and 1 dpn; at 28 dpn no transcripts were altered, and at 188 dpn only a few transcripts showed a different abundance between diet groups. However, when assessing transcriptional changes across developmental time points, marked differences were obvious among the dietary groups. Depending on the gestational dietary exposure, short- and long-term effects were observed for mRNA expression of genes related to cell cycle regulation, energy metabolism, growth factor signaling pathways, and nucleic acid metabolism. In particular, the abundance of transcripts related to cell cycle remained divergent among the groups during development. CONCLUSION: Expression analysis indicates that maternal protein supply induced programming of the offspring's genome; early postnatal compensation of the slight growth retardation obvious at birth in HP piglets resulted, as did a permanently different developmental alteration and responsiveness to the common environment of the transcriptome. The transcriptome modulations are interpreted as the molecular equivalent of developmental plasticity of the offspring that necessitates adaptation and maintenance of the organismal phenotype
    corecore