17 research outputs found

    Human plasmacytoid dendritic cells elicited different responses after infection with pathogenic and nonpathogenic Junin virus strains

    Get PDF
    The arenavirus Junin virus (JUNV) is the etiologic agent of Argentine hemorrhagic fever. We characterized the JUNV infection of human peripheral blood-derived plasmacytoid dendritic cells (hpDC), demonstrating that hpDC are susceptible to infection with the C#1 strain (attenuated) and even more susceptible to infection with the P (virulent) JUNV strain. However, hpDC elicited different responses in terms of viability, activation, maturation, and cytokine expression after infection with both JUNV strains.Instituto de Biotecnologia y Biologia Molecula

    Human plasmacytoid dendritic cells elicited different responses after infection with pathogenic and nonpathogenic Junin virus strains

    Get PDF
    The arenavirus Junin virus (JUNV) is the etiologic agent of Argentine hemorrhagic fever. We characterized the JUNV infection of human peripheral blood-derived plasmacytoid dendritic cells (hpDC), demonstrating that hpDC are susceptible to infection with the C#1 strain (attenuated) and even more susceptible to infection with the P (virulent) JUNV strain. However, hpDC elicited different responses in terms of viability, activation, maturation, and cytokine expression after infection with both JUNV strains.Instituto de Biotecnologia y Biologia Molecula

    In vitro and in vivo anticancer properties of a Calcarea carbonica derivative complex (M8) treatment in a murine melanoma model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melanoma is the most aggressive form of skin cancer and the most rapidly expanding cancer in terms of worldwide incidence. Chemotherapeutic approaches to treat melanoma have had only marginal success. Previous studies in mice demonstrated that a high diluted complex derived from <it>Calcarea carbonica </it>(M8) stimulated the tumoricidal response of activated lymphocytes against B16F10 melanoma cells <it>in vitro</it>.</p> <p>Methods</p> <p>Here we describe the <it>in vitro </it>inhibition of invasion and the <it>in vivo </it>anti-metastatic potential after M8 treatment by inhalation in the B16F10 lung metastasis model.</p> <p>Results</p> <p>We found that M8 has at least two functions, acting as both an inhibitor of cancer cell adhesion and invasion and as a perlecan expression antagonist, which are strongly correlated with several metastatic, angiogenic and invasive factors in melanoma tumors.</p> <p>Conclusion</p> <p>The findings suggest that this medication is a promising non-toxic therapy candidate by improving the immune response against tumor cells or even induce direct dormancy in malignancies.</p

    Garbage in, garbage out: how reliable training data improved a virtual screening approach against SARS-CoV-2 MPro

    Get PDF
    Introduction: The identification of chemical compounds that interfere with SARS-CoV-2 replication continues to be a priority in several academic and pharmaceutical laboratories. Computational tools and approaches have the power to integrate, process and analyze multiple data in a short time. However, these initiatives may yield unrealistic results if the applied models are not inferred from reliable data and the resulting predictions are not confirmed by experimental evidence.Methods: We undertook a drug discovery campaign against the essential major protease (MPro) from SARS-CoV-2, which relied on an in silico search strategy –performed in a large and diverse chemolibrary– complemented by experimental validation. The computational method comprises a recently reported ligand-based approach developed upon refinement/learning cycles, and structure-based approximations. Search models were applied to both retrospective (in silico) and prospective (experimentally confirmed) screening.Results: The first generation of ligand-based models were fed by data, which to a great extent, had not been published in peer-reviewed articles. The first screening campaign performed with 188 compounds (46 in silico hits and 100 analogues, and 40 unrelated compounds: flavonols and pyrazoles) yielded three hits against MPro (IC50 ≤ 25 μM): two analogues of in silico hits (one glycoside and one benzo-thiazol) and one flavonol. A second generation of ligand-based models was developed based on this negative information and newly published peer-reviewed data for MPro inhibitors. This led to 43 new hit candidates belonging to different chemical families. From 45 compounds (28 in silico hits and 17 related analogues) tested in the second screening campaign, eight inhibited MPro with IC50 = 0.12–20 μM and five of them also impaired the proliferation of SARS-CoV-2 in Vero cells (EC50 7–45 μM).Discussion: Our study provides an example of a virtuous loop between computational and experimental approaches applied to target-focused drug discovery against a major and global pathogen, reaffirming the well-known “garbage in, garbage out” machine learning principle

    Lactobacillus delbrueckii subsp lactis CIDCA 133 modulates response of human epithelial and dendritic cells infected with Bacillus cereus.

    No full text
    International audienceIt is known that probiotic microorganisms are able to modulate pathogen virulence. This ability is strain dependent and involves multiple interactions between microorganisms and relevant host's cell populations. In the present work we focus on the effect of a potentially probiotic lactobacillus strain (Lactobacillus delbrueckii subsp. lactis CIDCA 133) in an in vitro model of Bacillus cereus infection. Our results showed that infection of intestinal epithelial HT-29 cells by B. cereus induces nuclear factor kappa B (NF-κB) pathway. Noteworthy, the presence of strain L. delbrueckii subsp.lactis CIDCA 133 increases stimulation. However, B. cereus-induced interleukin (IL)-8 production by epithelial cells is partially abrogated by L. delbrueckii subsp. lactis CIDCA 133. These findings suggest that signalling pathways other than that of NF-κB are involved. In a co-culture system (HT-29 and monocyte-derived dendritic cells), B. cereus was able to translocate from the epithelial (upper) to the dendritic cell compartment (lower). This translocation was partially abrogated by the presence of lactobacilli in the upper compartment. In addition, infection of epithelial cells in the co-culture model, led to an increase in the expression of CD86 by dendritic cells. This effect could not be modified in the presence of lactobacilli. Interestingly, infection of enterocytes with B. cereus triggers production of proinflammatory cytokines by dendritic cells (IL-8, IL-6 and tumour necrosis factor alpha (TNF-α)). The production of TNF-α (a protective cytokine in B. cereus infections) by dendritic cells was increased in the presence of lactobacilli. The present work demonstrates for the first time the effect of L. delbrueckii subsp. lactis CIDCA 133, a potentially probiotic strain, in an in vitro model of B. cereus infection. The presence of the probiotic strain modulates cell response both in infected epithelial and dendritic cells thus suggesting a possible beneficial effect of selected lactobacilli strains on the course of B. cereus infection

    Identification and characterization of antioxidant peptides obtained from the bioaccessible fraction of α-lactalbumin hydrolysate

    No full text
    Abstract: Whey is an abundantand sustainable source of bioactive peptides obtained from cheese making process. Whey proteins such as α-lactalbumin can be biologically active when the bioactive peptides encrypted in the amino acid sequence of the native protein are released by enzymatic hydrolysis. In the present work, the identification, sequence analysis, and antioxidant activity of bioaccessible peptides from α-lactalbumin alcalase-hydrolysate was assessed. Antioxidant activity (ABTS, ORAC, and HORAC) of α-lactalbumin showed a significant increase (p < 0.05) after the enzymatic treatment with alcalase and this capacity increased even more after the simulation of the gastrointestinal digestion process. Peptides contained in the gastrointestinal digest of α-lactalbumin hydrolysate were separated by preparative RP-HPLC (55 fractions), and three peptides were identified by LC-MS/MS analysis from selected fractions: IWCKDDQNPH (MW: 1254.54 Da) f(59-68), KFLDDDLTDDIM (MW: 1439.64 Da) f(79-90), DKFLDDDLTDDIM (MW: 1554.67 Da) f(78-90). Among the chemically synthesized peptides, IWCKDDQNPH showed the highest antioxidant capacity determined by ORAC, ABTS, and HORAC assays (IC50 0.015 ± 0.002, 0.45 ± 0.02, and 1.30 ± 0.05 mg/ml, respectively) and this activity may be related to the amino acid sequence. This is the first report where these bioaccessible peptides from α-lactalbumin hydrolysate were identified. The α-lactalbumin hydrolysate could be employed as a functional antioxidant ingredient. Practical Application: The present work studied the bioaccessibility of antioxidant peptides from an α-lactalbumin alcalase-hydrolysate by identifying three novel bioaccessible peptides responsible for the antioxidant capacity, providing evidence of the hydrolysate potential as an antioxidant ingredient in the formulations of functional foods and/or food supplements.Fil: Báez, Jessica. Universidad de la República; UruguayFil: Fernández Fernández, Adriana M.. Universidad de la República; UruguayFil: Tironi, Valeria Anahi. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Bollati Fogolín, Mariela. Instituto Pasteur de Montevideo; UruguayFil: Añon, Maria Cristina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Medrano Fernández, Alejandra. Universidad de la República; Urugua

    Organoides intestinales: una herramienta versátil para el estudio in vitro de patologías del epitelio intestinal

    No full text
    Los organoides intestinales son estructuras multicelulares tridimensionales que derivan de células madre y tienen la capacidad de auto-organizarse. Recrean varios aspectos de la morfología, composición celular y fisiología del intestino, constituyendo modelos del epitelio intestinal de mayor relevancia que las líneas celulares tradicionales. El objetivo de este trabajo consistió en implementar el cultivo de organoides intestinales murinos, bovinos y ovinos, a partir de células madre adultas. Para posteriormente emplearlos como herramientas de reducción del uso de animales de experimentación y para el estudio de patologías asociadas al epitelio intestinal.Agencia Nacional de Investigación e Innovació

    A green multicomponent synthesis of tocopherol analogues with antiproliferative activities

    No full text
    A one-pot efficient, practical and eco-friendly synthesis of tocopherol analogues has been developed using water or solvent free conditions via Passerini and Ugi multicomponent reactions. These reactions can be optimized using microwave irradiation or ultrasound as the energy source. Accordingly, a small library of 30 compounds was prepared for biological tests. The evaluation of the antiproliferative activity in the human solid tumor cell lines A549 (lung), HBL-100 (breast), HeLa (cervix), SW1573 (lung), T-47D (breast), and WiDr (colon) provided lead compounds with GI values between 1 and 5 μM. A structure–activity relationship is also discussed. One of the studied compounds comes up as a future candidate for the development of potent tocopherol-mimetic therapeutic agents for cancer.This work was supported by Agencia Nacional de Investigación e Innovación (ANII-Fondo Clemente Estable, FCE-2-2011-1-5717), PEDECIBA-Química, Uruguay and Institut Pasteur de Montevideo - FOCEM Mercosur (COF 03/11).Peer Reviewe
    corecore