99 research outputs found

    Lattice Point Generating Functions and Symmetric Cones

    Full text link
    We show that a recent identity of Beck-Gessel-Lee-Savage on the generating function of symmetrically contrained compositions of integers generalizes naturally to a family of convex polyhedral cones that are invariant under the action of a finite reflection group. We obtain general expressions for the multivariate generating functions of such cones, and work out the specific cases of a symmetry group of type A (previously known) and types B and D (new). We obtain several applications of the special cases in type B, including identities involving permutation statistics and lecture hall partitions.Comment: 19 page

    Unraveling CO adsorption on model single-atom catalysts

    Get PDF
    Understanding how the local environment of a "single-atom" catalyst affects stability and reactivity remains a challenge. We present an in-depth study of copper1, silver1, gold1, nickel1, palladium1, platinum1, rhodium1, and iridium1 species on Fe3O4(001), a model support in which all metals occupy the same twofold-coordinated adsorption site upon deposition at room temperature. Surface science techniques revealed that CO adsorption strength at single metal sites differs from the respective metal surfaces and supported clusters. Charge transfer into the support modifies the d-states of the metal atom and the strength of the metal-CO bond. These effects could strengthen the bond (as for Ag1-CO) or weaken it (as for Ni1-CO), but CO-induced structural distortions reduce adsorption energies from those expected on the basis of electronic structure alone. The extent of the relaxations depends on the local geometry and could be predicted by analogy to coordination chemistry

    Spin reorientation transition of magnetite (001)

    Get PDF
    We have imaged the rearrangement of the magnetic domains on magnetite (001) when crossing the spin reorientation transition and the Verwey transition with nanometer resolution. By means of spin-polarized low-energy electron microscopy we have monitored the change in the easy axes lowering the temperature through both transitions in remanence. The spin reorientation transition occurs in two steps: initial nucleation and growth of domains with a new surface magnetic orientation is followed by a smooth evolution.We thank Dr. A. T. N'Diaye for his support with the scripts for the color representation of the magnetization. This research was partly supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under Projects No. MAT2011-52477-C5-2-P, No. MAT2012-38045-C04-01, and No. MAT2015-64110-C2-1-P. G.S.P. and R.B. acknowledge funding from the Austrian Science Fund START prize Y 847-N20 and Project No. P24925-N20. Experiments were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. L.M.-G. thanks the MINECO for an FPI contract with reference Contract No. BES-2013-063396. R.B. acknowledges a stipend from the TU Wien and Austrian Science Fund doctoral college Solids4Fun (Project No. W1243). A.M. thanks the support of the Spanish Ministry of Education through Project No. PRX14/00307.Peer Reviewe

    Co on Fe3O4(001): Towards precise control of surface properties

    Get PDF
    A novel approach to incorporate cobalt atoms into a magnetite single crystal is demonstrated by a combination of x-ray spectro-microscopy, low-energy electron diffraction, and density-functional theory calculations. Co is deposited at room temperature on the reconstructed magnetite (001) surface filling first the subsurface octahedral vacancies and then occupying adatom sites on the surface. Progressive annealing treatments at temperatures up to 733 K diffuse the Co atoms into deeper crystal positions, mainly into octahedral ones with a marked inversion level. The oxidation state, coordination, and magnetic moments of the cobalt atoms are followed from their adsorption to their final incorporation into the bulk, mostly as octahedral Co. This precise control of the near-surface Co atoms location opens up the way to accurately tune the surface physical and magnetic properties of mixed spinel oxides.Peer Reviewe
    corecore