10 research outputs found

    Quantitative hopanoid analysis enables robust pattern detection and comparison between laboratories

    Get PDF
    Hopanoids are steroid-like lipids from the isoprenoid family that are produced primarily by bacteria. Hopanes, molecular fossils of hopanoids, offer the potential to provide insight into environmental transitions on the early Earth, if their sources and biological functions can be constrained. Semiquantitative methods for mass spectrometric analysis of hopanoids from cultures and environmental samples have been developed in the last two decades. However, the structural diversity of hopanoids, and possible variability in their ionization efficiencies on different instruments, have thus far precluded robust quantification and hindered comparison of results between laboratories. These ionization inconsistencies give rise to the need to calibrate individual instruments with purified hopanoids to reliably quantify hopanoids. Here, we present new approaches to obtain both purified and synthetic quantification standards. We optimized 2-methylhopanoid production in Rhodopseudomonas palustris TIE-1 and purified 2Me-diplopterol, 2Me-bacteriohopanetetrol (2Me-BHT), and their unmethylated species (diplopterol and BHT). We found that 2-methylation decreases the signal intensity of diplopterol between 2 and 34% depending on the instrument used to detect it, but decreases the BHT signal less than 5%. In addition, 2Me-diplopterol produces 10Ă— higher ion counts than equivalent quantities of 2Me-BHT. Similar deviations were also observed using a flame ionization detector for signal quantification in GC. In LC-MS, however, 2Me-BHT produces 11Ă— higher ion counts than 2Me-diplopterol but only 1.2Ă— higher ion counts than the sterol standard pregnane acetate. To further improve quantification, we synthesized tetradeuterated (D_4) diplopterol, a precursor for a variety of hopanoids. LC-MS analysis on a mixture of (D4)-diplopterol and phospholipids showed that under the influence of co-eluted phospholipids, the D_4-diplopterol internal standard quantifies diplopterol more accurately than external diplopterol standards. These new quantitative approaches permit meaningful comparisons between studies, allowing more accurate hopanoid pattern detection in both laboratory and environmental samples

    Membranes by the Numbers

    Get PDF
    Many of the most important processes in cells take place on and across membranes. With the rise of an impressive array of powerful quantitative methods for characterizing these membranes, it is an opportune time to reflect on the structure and function of membranes from the point of view of biological numeracy. To that end, in this article, I review the quantitative parameters that characterize the mechanical, electrical and transport properties of membranes and carry out a number of corresponding order of magnitude estimates that help us understand the values of those parameters.Comment: 27 pages, 12 figure

    Single-Cell Census of Mechanosensitive Channels in Living Bacteria

    Get PDF
    Bacteria are subjected to a host of different environmental stresses. One such insult occurs when cells encounter changes in the osmolarity of the surrounding media resulting in an osmotic shock. In recent years, a great deal has been learned about mechanosensitive (MS) channels which are thought to provide osmoprotection in these circumstances by opening emergency release valves in response to membrane tension. However, even the most elementary physiological parameters such as the number of MS channels per cell, how MS channel expression levels influence the physiological response of the cells, and how this mean number of channels varies from cell to cell remain unanswered. In this paper, we make a detailed quantitative study of the expression of the mechanosensitive channel of large conductance (MscL) in different media and at various stages in the growth history of bacterial cultures. Using both quantitative fluorescence microscopy and quantitative Western blots our study complements earlier electrophysiology-based estimates and results in the following key insights: i) the mean number of channels per cell is much higher than previously estimated, ii) measurement of the single-cell distributions of such channels reveals marked variability from cell to cell and iii) the mean number of channels varies under different environmental conditions. The regulation of MscL expression displays rich behaviors that depend strongly on culturing conditions and stress factors, which may give clues to the physiological role of MscL. The number of stress-induced MscL channels and the associated variability have far reaching implications for the in vivo response of the channels and for modeling of this response. As shown by numerous biophysical models, both the number of such channels and their variability can impact many physiological processes including osmoprotection, channel gating probability, and channel clustering

    Magnesium flux modulates ribosomes to increase bacterial survival

    No full text
    Bacteria exhibit cell-to-cell variability in their resilience to stress, for example, following antibiotic exposure. Higher resilience is typically ascribed to "dormant" non-growing cellular states. Here, by measuring membrane potential dynamics of Bacillus subtilis cells, we show that actively growing bacteria can cope with ribosome-targeting antibiotics through an alternative mechanism based on ion flux modulation. Specifically, we observed two types of cellular behavior: growth-defective cells exhibited a mathematically predicted transient increase in membrane potential (hyperpolarization), followed by cell death, whereas growing cells lacked hyperpolarization events and showed elevated survival. Using structural perturbations of the ribosome and proteomic analysis, we uncovered that stress resilience arises from magnesium influx, which prevents hyperpolarization. Thus, ion flux modulation provides a distinct mechanism to cope with ribosomal stress. These results suggest new approaches to increase the effectiveness of ribosome-targeting antibiotics and reveal an intriguing connection between ribosomes and the membrane potential, two fundamental properties of cells.This work was supported by funding from The Spanish Ministry of Economy and Competitiveness and FEDER (project FIS2015-66503-C3-1-P) (to J.G.-O.), the ICREA Academia program (to J.G.-O.), and the Maria de Maeztu Program for Units of Excellence in Research and Development (Spanish Ministry of Economy and Competitiveness, MDM-2014-0370) (to J.G.-O.), the San Diego Center for Systems Biology (NIH P50 GM085764) (to G.M.S), National Institute of General Medical Sciences (R01 GM121888) (to G.M.S), and the Howard Hughes Medical Institute-Simons Foundation Faculty Scholars program (to G.M.S.)

    Magnesium flux modulates ribosomes to increase bacterial survival

    No full text
    Bacteria exhibit cell-to-cell variability in their resilience to stress, for example, following antibiotic exposure. Higher resilience is typically ascribed to "dormant" non-growing cellular states. Here, by measuring membrane potential dynamics of Bacillus subtilis cells, we show that actively growing bacteria can cope with ribosome-targeting antibiotics through an alternative mechanism based on ion flux modulation. Specifically, we observed two types of cellular behavior: growth-defective cells exhibited a mathematically predicted transient increase in membrane potential (hyperpolarization), followed by cell death, whereas growing cells lacked hyperpolarization events and showed elevated survival. Using structural perturbations of the ribosome and proteomic analysis, we uncovered that stress resilience arises from magnesium influx, which prevents hyperpolarization. Thus, ion flux modulation provides a distinct mechanism to cope with ribosomal stress. These results suggest new approaches to increase the effectiveness of ribosome-targeting antibiotics and reveal an intriguing connection between ribosomes and the membrane potential, two fundamental properties of cells.This work was supported by funding from The Spanish Ministry of Economy and Competitiveness and FEDER (project FIS2015-66503-C3-1-P) (to J.G.-O.), the ICREA Academia program (to J.G.-O.), and the Maria de Maeztu Program for Units of Excellence in Research and Development (Spanish Ministry of Economy and Competitiveness, MDM-2014-0370) (to J.G.-O.), the San Diego Center for Systems Biology (NIH P50 GM085764) (to G.M.S), National Institute of General Medical Sciences (R01 GM121888) (to G.M.S), and the Howard Hughes Medical Institute-Simons Foundation Faculty Scholars program (to G.M.S.)
    corecore