150 research outputs found

    Investigation of the HelioVital filter foil revealed protective effects against UVA1 irradiation-induced DNA damage and against UVA1-induced expression of matrixmetalloproteinases (MMP) MMP1, MMP2, MMP3 and MMP15

    Get PDF
    The damaging effects of solar ultraviolet (UV) radiation exposure to human skin are well known and can reach from accelerated skin aging (photoaging) to skin cancer. Much of the damaging effects of solar UVA (320–400 nm) radiation is associated with the induction of reactive oxygen species (ROS), which are capable to cause oxidative damage to DNA like the oxidized guanosine 8-hydroxy-2' -deoxyguanosine (8-OHdG). Therefore, new UV protective strategies, have to be tested for their efficiency to shield against UV induced damage. We investigated the protective effects of HelioVital sun protection filter foil against UVA1 irradiation in skin cells. It could be shown, that HelioVital sun protection filter foil has protective effects against UVA1 irradiation induced changes in matrix metalloproteinase (MMP) expression. Furthermore a UVA1-dependant regulation of MMP15 in human fibroblasts could be shown for the first time in this context. In addition, this study demonstrated the protective effect of the HelioVital filter film against UVA1-induced ROS production and DNA damage. These results could pave the way for clinical studies with HelioVital filter foil shielding against the damaging effects of phototherapy and other forms of irradiation therapy, thereby increasing the safety and treatment opportunities of these forms of therapy

    UVA-induced metabolic changes in non-malignant skin cells and the potential role of pyruvate as antioxidant

    Get PDF
    The exposure to UVA (320–400 nm) irradiation is a major threat to human skin concerning photoaging and carcinogenesis. It has been shown that UVA irradiation can induce reactive oxygen species (ROS) and DNA mutations, such as 8-hydroxydeoxyguanosine. Furthermore, UVA induces the expression of photoaging-associated matrix metalloproteases (MMPs), especially of matrix metalloprotease 1 (MMP 1) and matrix metalloprotease 3 (MMP 3). In addition to this, it was recently shown that UVA-induced ROS also increase glucose metabolism of melanoma cells, however, the influence of UVA on the glucose metabolism of non-malignant cells of the human skin has, so far, not been investigated in detail. Here, we investigated the UVA-induced changes in glucose metabolism and the functional relevance of these changes in primary fibroblasts—normal non-malignant cells of the skin. These cells showed an UVA-induced enhanced glucose consumption and lactate production and changes in pyruvate production. As it has been proposed that pyruvate could have antioxidant properties we tested the functional relevance of pyruvate as protective agent against UVA-induced ROS. Our initial experiments support earlier publications, demonstrating that pyruvate treated with H2O2 is non-enzymatically transformed to acetate. Furthermore, we show that this decarboxylation of pyruvate to acetate also occurs upon UVA irradiation. In addition to this, we could show that in fibroblasts pyruvate has antioxidant properties as enhanced levels of pyruvate protect cells from UVA-induced ROS and partially from a DNA mutation by the modified base 8-hydroxydeoxyguanosine. Furthermore, we describe for the first time, that the interaction of UVA with pyruvate is relevant for the regulation of photoaging-associated MMP 1 and MMP 3 expression

    Major Depressive Disorder is Associated with Impaired Mitochondrial Function in Skin Fibroblasts

    Get PDF
    Mitochondrial malfunction is supposed to be involved in the etiology and pathology of major depressive disorder (MDD). Here, we aimed to identify and characterize the molecular pathomechanisms related to mitochondrial dysfunction in adult human skin fibroblasts, which were derived from MDD patients or non-depressive control subjects. We found that MDD fibroblasts showed significantly impaired mitochondrial functioning: basal and maximal respiration, spare respiratory capacity, non-mitochondrial respiration and adenosine triphosphate (ATP)-related oxygen consumption was lower. Moreover, MDD fibroblasts harbor lower ATP levels and showed hyperpolarized mitochondrial membrane potential. To investigate cellular resilience, we challenged both groups of fibroblasts with hormonal (dexamethasone) or metabolic (galactose) stress for one week, and found that both stressors increased oxygen consumption but lowered ATP content in MDD as well as in non-depressive control fibroblasts. Interestingly, the bioenergetic differences between fibroblasts from MDD or non-depressed subjects, which were observed under non-treated conditions, could not be detected after stress. Our findings support the hypothesis that altered mitochondrial function causes a bioenergetic imbalance, which is associated with the molecular pathophysiology of MDD. The observed alterations in the oxidative phosphorylation system (OXPHOS) and other mitochondria-related properties represent a basis for further investigations of pathophysiological mechanisms and might open new ways to gain insight into antidepressant signaling pathways

    Cancer-associated cells release citrate to support tumour metastatic progression

    Get PDF
    Citrate is important for lipid synthesis and epigenetic regulation in addition to ATP production. We have previously reported that cancer cells import extracellular citrate via the pmCiC transporter to support their metabolism. Here, we show for the first time that citrate is supplied to cancer by cancer-associated stroma (CAS) and also that citrate synthesis and release is one of the latter’s major metabolic tasks. Citrate release from CAS is controlled by cancer cells through cross-cellular communication. The availability of citrate from CAS regulated the cytokine profile, metabolism and features of cellular invasion. Moreover, citrate released by CAS is involved in inducing cancer progression especially enhancing invasiveness and organ colonisation. In line with the in vitro observations, we show that depriving cancer cells of citrate using gluconate, a specific inhibitor of pmCiC, significantly reduced the growth and metastatic spread of human pancreatic cancer cells in vivo and muted stromal activation and angiogenesis. We conclude that citrate is supplied to tumour cells by CAS and citrate uptake plays a significant role in cancer metastatic progression

    p66Shc Aging Protein in Control of Fibroblasts Cell Fate

    Get PDF
    Reactive oxygen species (ROS) are wieldy accepted as one of the main factors of the aging process. These highly reactive compounds modify nucleic acids, proteins and lipids and affect the functionality of mitochondria in the first case and ultimately of the cell. Any agent or genetic modification that affects ROS production and detoxification can be expected to influence longevity. On the other hand, genetic manipulations leading to increased longevity can be expected to involve cellular changes that affect ROS metabolism. The 66-kDa isoform of the growth factor adaptor Shc (p66Shc) has been recognized as a relevant factor to the oxygen radical theory of aging. The most recent data indicate that p66Shc protein regulates life span in mammals and its phosphorylation on serine 36 is important for the initiation of cell death upon oxidative stress. Moreover, there is strong evidence that apart from aging, p66Shc may be implicated in many oxidative stress-associated pathologies, such as diabetes, mitochondrial and neurodegenerative disorders and tumorigenesis. This article summarizes recent knowledge about the role of p66Shc in aging and senescence and how this protein can influence ROS production and detoxification, focusing on studies performed on skin and skin fibroblasts

    Induced neural progenitor cells and iPS-neurons from major depressive disorder patients show altered bioenergetics and electrophysiological properties

    Get PDF
    The molecular pathomechanisms of major depressive disorder (MDD) are still not completely understood. Here, we follow the hypothesis, that mitochondria dysfunction which is inevitably associated with bioenergetic disbalance is a risk factor that contributes to the susceptibility of an individual to develop MDD. Thus, we investigated molecular mechanisms related to mitochondrial function in induced neuronal progenitor cells (NPCs) which were reprogrammed from fibroblasts of eight MDD patients and eight non-depressed controls. We found significantly lower maximal respiration rates, altered cytosolic basal calcium levels, and smaller soma size in NPCs derived from MDD patients. These findings are partially consistent with our earlier observations in MDD patient-derived fibroblasts. Furthermore, we differentiated MDD and control NPCs into iPS-neurons and analyzed their passive biophysical and active electrophysiological properties to investigate whether neuronal function can be related to altered mitochondrial activity and bioenergetics. Interestingly, MDD patient-derived iPS-neurons showed significantly lower membrane capacitance, a less hyperpolarized membrane potential, increased Na+ current density and increased spontaneous electrical activity. Our findings indicate that functional differences evident in fibroblasts derived from MDD patients are partially present after reprogramming to induced-NPCs, could relate to altered function of iPS-neurons and thus might be associated with the aetiology of major depressive disorder

    Mislocalization of XPF-ERCC1 Nuclease Contributes to Reduced DNA Repair in XP-F Patients

    Get PDF
    Xeroderma pigmentosum (XP) is caused by defects in the nucleotide excision repair (NER) pathway. NER removes helix-distorting DNA lesions, such as UV–induced photodimers, from the genome. Patients suffering from XP exhibit exquisite sun sensitivity, high incidence of skin cancer, and in some cases neurodegeneration. The severity of XP varies tremendously depending upon which NER gene is mutated and how severely the mutation affects DNA repair capacity. XPF-ERCC1 is a structure-specific endonuclease essential for incising the damaged strand of DNA in NER. Missense mutations in XPF can result not only in XP, but also XPF-ERCC1 (XFE) progeroid syndrome, a disease of accelerated aging. In an attempt to determine how mutations in XPF can lead to such diverse symptoms, the effects of a progeria-causing mutation (XPFR153P) were compared to an XP–causing mutation (XPFR799W) in vitro and in vivo. Recombinant XPF harboring either mutation was purified in a complex with ERCC1 and tested for its ability to incise a stem-loop structure in vitro. Both mutant complexes nicked the substrate indicating that neither mutation obviates catalytic activity of the nuclease. Surprisingly, differential immunostaining and fractionation of cells from an XFE progeroid patient revealed that XPF-ERCC1 is abundant in the cytoplasm. This was confirmed by fluorescent detection of XPFR153P-YFP expressed in Xpf mutant cells. In addition, microinjection of XPFR153P-ERCC1 into the nucleus of XPF–deficient human cells restored nucleotide excision repair of UV–induced DNA damage. Intriguingly, in all XPF mutant cell lines examined, XPF-ERCC1 was detected in the cytoplasm of a fraction of cells. This demonstrates that at least part of the DNA repair defect and symptoms associated with mutations in XPF are due to mislocalization of XPF-ERCC1 into the cytoplasm of cells, likely due to protein misfolding. Analysis of these patient cells therefore reveals a novel mechanism to potentially regulate a cell's capacity for DNA repair: by manipulating nuclear localization of XPF-ERCC1
    corecore