576 research outputs found

    Field dependence of the magnetic spectrum in anisotropic and Dzyaloshinskii-Moriya antiferromagnets: I. Theory

    Full text link
    We consider theoretically the effects of an applied uniform magnetic field on the magnetic spectrum of anisotropic two-dimensional and Dzyaloshinskii-Moriya layered quantum Heisenberg antiferromagnets. The first case is relevant for systems such as the two-dimensional square lattice antiferromagnet Sr(2)CuO(2)Cl(2), while the later is known to be relevant to the physics of the layered orthorhombic antiferromagnet La(2)CuO(4). We first establish the correspondence betwenn the low-energy spectrum obtained within the anisotropic non-linear sigma model and by means of the spin-wave approximation for a standard easy-axis antiferromagent. Then, we focus on the field-theory approach to calculate the magnetic field dependence of the magnon gaps and spectral intensities for magnetic fields applied along the three possible crystallographic directions. We discuss the various possible ground states and their evolution with temperature for the different field orientations, and the occurrence of spin-flop transitions for fields perpendicular to the layers (transverse fields) as well as for fields along the easy axis (longitudinal fields). Measurements of the one-magnon Raman spectrum in Sr(2)CuO(2)Cl(2) and La(2)CuO(4) and a comparison between the experimental results and the predictions of the present theory will be reported in part II of this research work [L. Benfatto et al., cond-mat/0602664].Comment: 21 pages, 11 figures, final version. Part II of the present work is presented in cond-mat/060266

    Impurity susceptibility and the fate of spin-flop transitions in lightly-doped La(2)CuO(4)

    Full text link
    We investigate the occurrence of a two-step spin-flop transition and spin reorientation when a longitudinal magnetic field is applied to lightly hole-doped La(2)CuO(4). We find that for large and strongly frustrating impurities, such as Sr in La(2-x)Sr(x)CuO(4), the huge enhancement of the longitudinal susceptibility suppresses the intermediate flop and the reorientation of spins is smooth and continuous. Contrary, for small and weakly frustrating impurities, such as O in La(2)CuO(4+y), a discontinuous spin reorientation (two-step spin-flop transition) takes place. Furthermore, we show that for La(2-x)Sr(x)CuO(4) the field dependence of the magnon gaps differs qualitatively from the La(2)CuO(4) case, a prediction to be verified with Raman spectroscopy or neutron scattering.Comment: 4 pages, 3 figures, For the connection between spin-flops and magnetoresistance, see cond-mat/061081

    Extended scaling relations for planar lattice models

    Get PDF
    It is widely believed that the critical properties of several planar lattice models, like the Eight Vertex or the Ashkin-Teller models, are well described by an effective Quantum Field Theory obtained as formal scaling limit. On the basis of this assumption several extended scaling relations among their indices were conjectured. We prove the validity of some of them, among which the ones by Kadanoff, [K], and by Luther and Peschel, [LP].Comment: 32 pages, 7 fi

    Charged-phonon theory and Fano effect in the optical spectroscopy of bilayer graphene

    Full text link
    Since their discovery, graphene-based systems represent an exceptional playground to explore the emergence of peculiar quantum effects. The present paper focuses on the anomalous appearence of strong infrared phonon resonances in the optical spectroscopy of bilayer graphene and on their pronounced Fano-like asymmetry, both tunable in gated devices. By developing a full microscopic many-body approach for the optical phonon response we explain how both effects can be quantitatively accounted for by the quantum interference of electronic and phononic excitations. We show that the phonon modes borrow a large dipole intensity from the electronic background, the so-called charged-phonon effect, and at the same time interfer with it, leading to a typical Fano response. Our approach allows one to disentangle the correct selection rules that control the relative importance of the two (symmetric and antisymmetric) relevant phonon modes for different values of the doping and/or of the gap in bilayer graphene. Finally, we discuss the extension of the same theoretical scheme to the Raman spectroscopy, to explain the lack of the same features on the Raman phononic spectra. Besides its remarkable success in explaining the existing experimental data in graphene-based systems, the present theoretical approach offers a general scheme for the microscopic understanding of Fano-like features in a wide variety of other systems.Comment: 16 pages, 11 eps figures, PR

    Theory of fluctuation conductivity from interband pairing in pnictide superconductors

    Get PDF
    We derive the effective action for superconducting fluctuations in a four-band model for pnictides, discussing the emergence of a single critical mode out of a dominant interband pairing mechanism. We then apply our model to calculate the paraconductivity in two-dimensional and layered three-dimensional systems, and compare our results with recent resistivity measurements in SmFeAsOFComment: 4 pages, 1 figure; final versio

    Rigorous proof of Luttinger liquid behavior in the 1d Hubbard model

    Full text link
    We give the first rigorous (non perturbative) proof of Luttinger liquid behavior in the one dimensional Hubbard model, for small repulsive interaction and values of the density different from half filling. The analysis is based on the combination of multiscale analysis with Ward identities bases on a hidden and approximate local chiral gauge invariance. No use is done of exact solutions or special integrability properties of the Hubbard model, and the results can be in fact easily generalized to include non local interactions, magnetic fields or interaction with external potential

    Anomalous behavior in an effective model of graphene with Coulomb interactions

    Get PDF
    We analyze by exact Renormalization Group (RG) methods the infrared properties of an effective model of graphene, in which two-dimensional massless Dirac fermions propagating with a velocity smaller than the speed of light interact with a three-dimensional quantum electromagnetic field. The fermionic correlation functions are written as series in the running coupling constants, with finite coefficients that admit explicit bounds at all orders. The implementation of Ward Identities in the RG scheme implies that the effective charges tend to a line of fixed points. At small momenta, the quasi-particle weight tends to zero and the effective Fermi velocity tends to a finite value. These limits are approached with a power law behavior characterized by non-universal critical exponents.Comment: 42 pages, 7 figures; minor corrections, one appendix added (Appendix A). To appear in Ann. Henri Poincar

    Frequency-dependent Thermal Response of the Charge System and Restricted Sum Rules in La(2-x)Sr(x)CuO(4)

    Full text link
    By using new and previous measurements of the abab-plane conductivity σ1ab(ω,T)\sigma_1^{ab} (\omega,T) of La2x_{2-x}Srx_xCuO4_{4} (LSCO) it is shown that the spectral weight W=0Ωσ1ab(ω,T)dωW = \int_0^\Omega {\sigma_1^{ab} (\omega,T) d\omega} obeys the same law W=W0B(Ω)T2W = W_0 - B(\Omega) T^2 which holds for a conventional metal like gold, for Ω\Omega's below the plasma frequency. However B(Ω)B(\Omega), which measures the "thermal response" of the charge system, in LSCO exhibits a peculiar behavior which points towards correlation effects. In terms of hopping models, B(Ω)B(\Omega) is directly related to an energy scale tTt_T, smaller by one order of magnitude than the full bandwidth t0W0t_0 \sim W_0.Comment: 4 pages with 3 fig

    Functional Integral Construction of the Thirring model: axioms verification and massless limit

    Get PDF
    We construct a QFT for the Thirring model for any value of the mass in a functional integral approach, by proving that a set of Grassmann integrals converges, as the cutoffs are removed and for a proper choice of the bare parameters, to a set of Schwinger functions verifying the Osterwalder-Schrader axioms. The corresponding Ward Identities have anomalies which are not linear in the coupling and which violate the anomaly non-renormalization property. Additional anomalies are present in the closed equation for the interacting propagator, obtained by combining a Schwinger-Dyson equation with Ward Identities.Comment: 55 pages, 9 figure
    corecore