176 research outputs found

    Low Sucrose, Omega-3 Enriched Diet Has Region-Specific Effects on Neuroinflammation and Synaptic Function Markers in a Mouse Model of Doxorubicin-Based Chemotherapy

    Get PDF
    Chemotherapeutic agents such as doxorubicin may negatively affect long-term brain functioning in cancer survivors; neuroinflammation may play a causal role. Dietary approaches that reduce inflammation, such as lowering sucrose and increasing eicosapentaenoic acid plus docosahexaenoic acid (EPA + DHA), may attenuate chemotherapy-induced neuroinflammation and synaptic damage, thereby improving quality of life. Ovariectomized, C57BL/6 mice were assigned to a chemotherapy (9 mg/kg doxorubicin + 90 mg/kg cyclophosphamide) or vehicle two-injection regimen, with injections two and four weeks after starting diets. In Study 1, mice received low sucrose diets with EPA + DHA or No EPA + DHA for four to six weeks; tissues were collected four, seven, or 14 days after the second injection. Compared to vehicle, chemotherapy increased pro-inflammatory cytokine IL-1β at day seven in the cortex and hippocampus, and reduced gene expression of synaptic marker Shank 3 at all timepoints in cortex, while EPA + DHA increased expression of Shank 3. In Study 2, high or low sucrose/EPA + DHA or No EPA + DHA diets were fed for five weeks; tissues were collected ten days after the second injection. Among chemotherapy-treated mice, brain DHA was higher with low sucrose feeding. Furthermore, low sucrose increased gene expression of Shank 1, while EPA + DHA increased expression of Shank 3 and reduced protein concentrations of pro-inflammatory markers IL-5, IL-6 and KC/GRO in the cortex, but not the hippocampus. Low sucrose, EPA + DHA diets may attenuate neuroinflammation and synaptic damage induced by doxorubicin-based chemotherapy in specific brain regions

    Low Sucrose, Omega-3 Enriched Diet Has Region-Specific Effects on Neuroinflammation and Synaptic Function Markers in a Mouse Model of Doxorubicin-Based Chemotherapy

    Get PDF
    Chemotherapeutic agents such as doxorubicin may negatively affect long-term brain functioning in cancer survivors; neuroinflammation may play a causal role. Dietary approaches that reduce inflammation, such as lowering sucrose and increasing eicosapentaenoic acid plus docosahexaenoic acid (EPA + DHA), may attenuate chemotherapy-induced neuroinflammation and synaptic damage, thereby improving quality of life. Ovariectomized, C57BL/6 mice were assigned to a chemotherapy (9 mg/kg doxorubicin + 90 mg/kg cyclophosphamide) or vehicle two-injection regimen, with injections two and four weeks after starting diets. In Study 1, mice received low sucrose diets with EPA + DHA or No EPA + DHA for four to six weeks; tissues were collected four, seven, or 14 days after the second injection. Compared to vehicle, chemotherapy increased pro-inflammatory cytokine IL-1β at day seven in the cortex and hippocampus, and reduced gene expression of synaptic marker Shank 3 at all timepoints in cortex, while EPA + DHA increased expression of Shank 3. In Study 2, high or low sucrose/EPA + DHA or No EPA + DHA diets were fed for five weeks; tissues were collected ten days after the second injection. Among chemotherapy-treated mice, brain DHA was higher with low sucrose feeding. Furthermore, low sucrose increased gene expression of Shank 1, while EPA + DHA increased expression of Shank 3 and reduced protein concentrations of pro-inflammatory markers IL-5, IL-6 and KC/GRO in the cortex, but not the hippocampus. Low sucrose, EPA + DHA diets may attenuate neuroinflammation and synaptic damage induced by doxorubicin-based chemotherapy in specific brain regions

    Influence of Dietary Oil Content and Conjugated Linoleic Acid (CLA) on Lipid Metabolism Enzyme Activities and Gene Expression in Tissues of Atlantic Salmon (Salmo salar L.)

    Get PDF
    The overall objective is to test the hypothesis that conjugated linoleic acid (CLA) has beneficial effects in Atlantic salmon through affecting lipid and fatty acid metabolism. The specific aims of the present study were to determine the effects of CLA on some key pathways of fatty acid metabolism including fatty acid oxidation and highly unsaturated fatty acid (HUFA) synthesis. Salmon smolts were fed diets containing two levels of fish oil (low, ~18% and high, ~34%) containing three levels of CLA (a 1:1 mixture of 9-cis,trans-11 and trans-10,cis-12 at 0, 1 and 2% of diet) for 3 months. The effects of dietary CLA on HUFA synthesis and β-oxidation were measured and the expression of key genes in the fatty acid oxidation and HUFA synthesis pathways, and potentially important transcription factors, peroxisome proliferators activated receptors (PPARs), determined in selected tissues. Liver HUFA synthesis and desaturase gene expression was increased by dietary CLA and decreased by high dietary oil content. Carnitine palmitoyltransferase-I (CPT-I) activity and gene expression were generally increased by CLA in muscle tissues although dietary oil content had relatively little effect. In general CPT-I activity or gene expression was not correlated with β-oxidation. Dietary CLA tended to increase PPARα and β gene expression in both liver and muscle tissues, and PPARγ in liver. In summary, gene expression and activity of the fatty acid pathways were altered in response to dietary CLA and/or oil content, with data suggesting that PPARs are also regulated in response to CLA. Correlations were observed between dietary CLA, liver HUFA synthesis and desaturase gene expression, and liver PPARα expression, and also between dietary CLA, CPT-I expression and activity, and PPARα expression in muscle tissues. In conclusion, this study suggests that dietary CLA has effects on fatty acid metabolism in Atlantic salmon and on PPAR transcription factors. However, further work is required to assess the potential of CLA as a dietary supplement, and the role of PPARs in the regulation of lipid metabolism in fish

    Altered Lipidome Composition Is Related to Markers of Monocyte and Immune Activation in Antiretroviral Therapy Treated Human Immunodeficiency Virus (HIV) Infection and in Uninfected Persons

    Get PDF
    Background: HIV infection and antiretroviral therapy (ART) have both been linked to dyslipidemia and increased cardiovascular disease (CVD) risk. Alterations in the composition of saturated (SaFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids are related to inflammation and CVD progression in HIV-uninfected (HIV–) populations. The relationships among the lipidome and markers of monocyte and immune activation in HIV-infected (HIV+) individuals are not well understood.Methods: Concentrations of serum lipids and their fatty acid composition were measured by direct infusion-tandem mass spectrometry in samples from 20 ART-treated HIV+ individuals and 20 HIV– individuals.Results: HIV+ individuals had increased levels of free fatty acids (FFAs) with enrichment of SaFAs, including palmitic acid (16:0) and stearic acid (18:0), and these levels were directly associated with markers of monocyte (CD40, HLA-DR, TLR4, CD36) and serum inflammation (LBP, CRP). PUFA levels were reduced significantly in HIV+ individuals, and many individual PUFA species levels were inversely related to markers of monocyte activation, such as tissue factor, TLR4, CD69, and SR-A. Also in HIV+ individuals, the composition of lysophosphatidylcholine (LPC) was enriched for SaFAs; LPC species containing SaFAs were directly associated with IL-6 levels and monocyte activation. We similarly observed direct relationships between levels of SaFAs and inflammation in HIV uninfected individuals. Further, SaFA exposure altered monocyte subset phenotypes and inflammatory cytokine production in vitro.Conclusions: The lipidome is altered in ART-treated HIV infection, and may contribute to inflammation and CVD progression. Detailed lipidomic analyses may better assess CVD risk in both HIV+ and HIV– individuals than does traditional lipid profiling

    Conversion of t11t13 CLA into c9t11 CLA in Caco-2 Cells and Inhibition by Sterculic Oil

    Get PDF
    Background : Conjugated linoleic acids (CLA), and principally c9t11 CLA, are suspected to have numerous preventive properties regarding non-infectious pathologies such as inflammatory diseases, atherosclerosis and several types of cancer. C9t11 CLA is produced in the rumen during biohydrogenation of linoleic acid, but can also be synthesized in mammalian tissues from trans-vaccenic acid (C18:1 t11) through the action of delta-9 desaturase (D9D). For several years, it is also known that c9t11 CLA can be synthesized from conjugated linolenic acids (CLnA), i.e. c9t11c13 CLnA and c9t11t13 CLnA. This study aimed at investigating to which extent and by which route c9t11 CLA can be produced from another isomer of CLA, the t11t13 CLA that is structurally very similar to c9t11t13 CLnA, in Caco-2 cells

    Creatine Monohydrate and Conjugated Linoleic Acid Improve Strength and Body Composition Following Resistance Exercise in Older Adults

    Get PDF
    Aging is associated with lower muscle mass and an increase in body fat. We examined whether creatine monohydrate (CrM) and conjugated linoleic acid (CLA) could enhance strength gains and improve body composition (i.e., increase fat-free mass (FFM); decrease body fat) following resistance exercise training in older adults (>65 y). Men (N = 19) and women (N = 20) completed six months of resistance exercise training with CrM (5g/d)+CLA (6g/d) or placebo with randomized, double blind, allocation. Outcomes included: strength and muscular endurance, functional tasks, body composition (DEXA scan), blood tests (lipids, liver function, CK, glucose, systemic inflammation markers (IL-6, C-reactive protein)), urinary markers of compliance (creatine/creatinine), oxidative stress (8-OH-2dG, 8-isoP) and bone resorption (Ν-telopeptides). Exercise training improved all measurements of functional capacity (P<0.05) and strength (P<0.001), with greater improvement for the CrM+CLA group in most measurements of muscular endurance, isokinetic knee extension strength, FFM, and lower fat mass (P<0.05). Plasma creatinine (P<0.05), but not creatinine clearance, increased for CrM+CLA, with no changes in serum CK activity or liver function tests. Together, this data confirms that supervised resistance exercise training is safe and effective for increasing strength in older adults and that a combination of CrM and CLA can enhance some of the beneficial effects of training over a six-month period. Trial Registration. ClinicalTrials.gov NCT0047390
    • …
    corecore