493 research outputs found

    Fast Dynamical Evolution of Hadron Resonance Gas via Hagedorn States

    Full text link
    Hagedorn states are the key to understand how all hadrons observed in high energy heavy ion collisions seem to reach thermal equilibrium so quickly. An assembly of Hagedorn states is formed in elementary hadronic or heavy ion collisions at hadronization. Microscopic simulations within the transport model UrQMD allow to study the time evolution of such a pure non-equilibrated Hagedorn state gas towards a thermally equilibrated Hadron Resonance Gas by using dynamics, which unlike strings, fully respect detailed balance. Propagation, repopulation, rescatterings and decays of Hagedorn states provide the yields of all hadrons up to a mass of m=2.5 GeV. Ratios of feed down corrected hadron multiplicities are compared to corresponding experimental data from the ALICE collaboration at LHC. The quick thermalization within t=1-2 fm\c of the emerging Hadron Resonance Gas exposes Hagedorn states as a tool to understand hadronization.Comment: 5 pages, 7 figures, 1 tabl

    Thermalization of Hadrons via Hagedorn States

    Get PDF
    Hagedorn states are characterized by being very massive hadron-like resonances and by not being limited to quantum numbers of known hadrons. To generate such a zoo of different Hagedorn states, a covariantly formulated bootstrap equation is solved by ensuring energy conservation and conservation of baryon number BB, strangeness SS and electric charge QQ. The numerical solution of this equation provides Hagedorn spectra, which enable to obtain the decay width for Hagedorn states needed in cascading decay simulations. A single (heavy) Hagedorn state cascades by various two-body decay channels subsequently into final stable hadrons. All final hadronic observables like masses, spectral functions and decay branching ratios for hadronic feed down are taken from the hadronic transport model UrQMD. Strikingly, the final energy spectra of resulting hadrons are exponential showing a thermal-like distribution with the characteristic Hagedorn temperature

    Development of UHF measurements

    Get PDF
    Collector gauge and orbitron gauge for ultrahigh vacuum measurement

    A Contrast/Comparison of Needs Assessment and Curricular Evaluation for Management Careers in Hostelries/Travel, Private Sport Clubs, and Agencies

    Get PDF
    The purposes of this study were to: (a) assess the needs for sport management positions; and (b) obtain the evaluation of sport management programs/curricula by management personnel from different business perspectives, i.e., hostelries/travel, private sport clubs, and agencies. According to curriculum theorists, there has been an increase in the demand for sport management positions, but there is a real lack of and need for empirical evidence upon which to establish the theoretical basis and content for programs/curricula to meet this demand. Thus, the significance of this research is that it provides a basis for planning utilizing the empirical evidence of the needs assessment and program evaluation by/for professional sport managers in hostelries/travel, private sport clubs, and agencies

    Sinuous is a Drosophila claudin required for septate junction organization and epithelial tube size control

    Get PDF
    Epithelial tubes of the correct size and shape are vital for the function of the lungs, kidneys, and vascular system, yet little is known about epithelial tube size regulation. Mutations in the Drosophila gene sinuous have previously been shown to cause tracheal tubes to be elongated and have diameter increases. Our genetic analysis using a sinuous null mutation suggests that sinuous functions in the same pathway as the septate junction genes neurexin and scribble, but that nervana 2, convoluted, varicose, and cystic have functions not shared by sinuous. Our molecular analyses reveal that sinuous encodes a claudin that localizes to septate junctions and is required for septate junction organization and paracellular barrier function. These results provide important evidence that the paracellular barriers formed by arthropod septate junctions and vertebrate tight junctions have a common molecular basis despite their otherwise different molecular compositions, morphologies, and subcellular localizations
    • …
    corecore