29 research outputs found

    Limitations of Baseline Impedance, Impedance Drop and Current for Radiofrequency Catheter Ablation Monitoring: Insights from In Silico Modeling

    Get PDF
    [EN] Background: Baseline impedance, radiofrequency current, and impedance drop during radiofrequency catheter ablation are thought to predict effective lesion formation. However, quantifying the contributions of local versus remote impedances provides insights into the limitations of indices using those parameters. Methods: An in silico model of left atrial radiofrequency catheter ablation was used based on human thoracic measurements and solved for (1) initial impedance (Z), (2) percentage of radiofrequency power delivered to the myocardium and blood (3) total radiofrequency current, (4) impedance drop during heating, and (5) lesion size after a 25 W¿30 s ablation. Remote impedance was modeled by varying the mixing ratio between skeletal muscle and fat. Local impedance was modeled by varying insertion depth of the electrode (ID). Results: Increasing the remote impedance led to increased baseline impedance, lower system current delivery, and reduced lesion size. For ID = 0.5 mm, Z ranged from 115 to 132 ¿ when fat percentage varied from 20 to 80%, resulting in a decrease in the RF current from 472 to 347 mA and a slight decrease in lesion size from 5.6 to 5.1 mm in depth, and from 9.2 to 8.0 mm in maximum width. In contrast, increasing the local impedance led to lower system current but larger lesions. For a 50% fat¿muscle mixture, Z ranged from 118 to 138 ¿ when ID varied from 0.3 to 1.9 mm, resulting in a decrease in the RF current from 463 to 443 mA and an increase in lesion size, from 5.2 up to 7.5 mm in depth, and from 8.4 up to 11.6 mm in maximum width. In cases of nearly identical Z but different contributions of local and remote impedance, markedly different lesions sizes were observed despite only small differences in RF current. Impedance drop better predicted lesion size (R2 > 0.93) than RF current (R2 < 0.1). Conclusions: Identical baseline impedances and observed RF currents can lead to markedly different lesion sizes with different relative contributions of local and remote impedances to the electrical circuit. These results provide mechanistic insights into the advantage of measuring local impedance and identifies potential limitations of indices incorporating baseline impedance or current to predict lesion qualitySpanish Ministerio de Ciencia, Innovación y Universidades / Agencia Estatal de Investigación (MCIN/AEI/10.13039/501100011033) under grant RTI2018-094357-B-C21, and Agencia Nacional de Promoción Científica y Tecnológica de Argentina, grant PICT-2016-2303. Dr. Irastorza was the recipient of a scholarship of the Programa de Becas Externas Postdoctorales para Jóvenes Investigadores del CONICET (Argentina).Irastorza, RM.; Maher, T.; Barkagan, M.; Liubasuskas, R.; Pérez, JJ.; Berjano, E.; D Avila, A. (2022). Limitations of Baseline Impedance, Impedance Drop and Current for Radiofrequency Catheter Ablation Monitoring: Insights from In Silico Modeling. Journal of Cardiovascular Development and Disease. 9(10):1-12. https://doi.org/10.3390/jcdd9100336S11291

    A patient with hypereosinophilic syndrome that manifested with acquired hemophilia and elevated IgG4: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Hypereosinophilic syndrome is defined as a prolonged state (more than six months) of eosinophilia (greater than 1500 cells/μL), without an apparent etiology and with end-organ damage. Hypereosinophilic syndrome can cause coagulation abnormalities. Among hypereosinophilic syndrome types, the lymphocytic variant (lymphocytic hypereosinophilic syndrome) is derived from a monoclonal proliferation of T lymphocytes. Here, we describe the case of a patient with lymphocytic hypereosinophilic syndrome who presented with a coagulation abnormality. To the best of our knowledge, this is the first such report including a detailed clinical picture and temporal cytokine profile.</p> <p>Case presentation</p> <p>A 77-year-old Japanese man presented to our facility with massive hematuria and hypereosinophilia (greater than 2600 cells/μl). His eosinophilia first appeared five years earlier when he developed femoral artery occlusion. He manifested with multiple hematomas and prolonged activated partial thromboplastin time. His IgG4 level was remarkably elevated (greater than 2000 mg/dL). Polymerase chain reaction tests of peripheral blood and bone marrow identified lymphocytic hypereosinophilic syndrome. His prolonged activated partial thromboplastin time was found to be due to acquired hemophilia. Glucocorticoids suppressed both the hypereosinophilia and coagulation abnormality. However, tapering of glucocorticoids led to a relapse of the coagulation abnormality alone, without eosinophilia. Tumor necrosis factor α, interleukin-5, and/or eotaxin-3 may have caused the hypereosinophilia, and interleukin-10 was correlated with the coagulation abnormality.</p> <p>Conclusions</p> <p>To the best of our knowledge, this is the first case in which lymphocytic hypereosinophilic syndrome and IgG4-related disease have overlapped. In addition, our patient is only the second case of hypereosinophilic disease that manifested with acquired hemophilia. Our patient relapsed with the coagulation abnormality alone, without eosinophilia. This report shows that the link between eosinophilia, IgG4, and clinical manifestations is not simple and provides useful insight into the immunopathology of hypereosinophilic syndrome and IgG4-related disease.</p

    Three-dimensional holographic visualization of high-resolution myocardial scar on HoloLens.

    No full text
    Visualization of the complex 3D architecture of myocardial scar could improve guidance of radio-frequency ablation in the treatment of ventricular tachycardia (VT). In this study, we sought to develop a framework for 3D holographic visualization of myocardial scar, imaged using late gadolinium enhancement (LGE), on the augmented reality HoloLens. 3D holographic LGE model was built using the high-resolution 3D LGE image. Smooth endo/epicardial surface meshes were generated using Poisson surface reconstruction. For voxel-wise 3D scar model, every scarred voxel was rendered into a cube which carries the actual resolution of the LGE sequence. For surface scar model, scar information was projected on the endocardial surface mesh. Rendered layers were blended with different transparency and color, and visualized on HoloLens. A pilot animal study was performed where 3D holographic visualization of the scar was performed in 5 swines who underwent controlled infarction and electroanatomic mapping to identify VT substrate. 3D holographic visualization enabled assessment of the complex 3D scar architecture with touchless interaction in a sterile environment. Endoscopic view allowed visualization of scar from the ventricular chambers. Upon completion of the animal study, operator and mapping specialist independently completed the perceived usefulness questionnaire in the six-item usefulness scale. Operator and mapping specialist found it useful (usefulness rating: operator, 5.8; mapping specialist, 5.5; 1-7 scale) to have scar information during the intervention. HoloLens 3D LGE provides a true 3D perception of the complex scar architecture with immersive experience to visualize scar in an interactive and interpretable 3D approach, which may facilitate MR-guided VT ablation
    corecore