26 research outputs found

    Bile acids destabilise HIF-1a and promote anti-tumour phenotypes in cancer cell models.

    Get PDF
    BACKGROUND: The role of the microbiome has become synonymous with human health and disease. Bile acids, as essential components of the microbiome, have gained sustained credibility as potential modulators of cancer progression in several disease models. At physiological concentrations, bile acids appear to influence cancer phenotypes, although conflicting data surrounds their precise physiological mechanism of action. Previously, we demonstrated bile acids destabilised the HIF-1a subunit of the Hypoxic-Inducible Factor-1 (HIF-1) transcription factor. HIF-1 overexpression is an early biomarker of tumour metastasis and is associated with tumour resistance to conventional therapies, and poor prognosis in a range of different cancers. METHODS: Here we investigated the effects of bile acids on the cancer growth and migratory potential of cell lines where HIF-1a is known to be active under hypoxic conditions. HIF-1a status was investigated in A-549 lung, DU-145 prostate and MCF-7 breast cancer cell lines exposed to bile acids (CDCA and DCA). Cell adhesion, invasion, migration was assessed in DU-145 cells while clonogenic growth was assessed in all cell lines. RESULTS: Intracellular HIF-1a was destabilised in the presence of bile acids in all cell lines tested. Bile acids were not cytotoxic but exhibited greatly reduced clonogenic potential in two out of three cell lines. In the migratory prostate cancer cell line DU-145, bile acids impaired cell adhesion, migration and invasion. CDCA and DCA destabilised HIF-1a in all cells and significantly suppressed key cancer progression associated phenotypes; clonogenic growth, invasion and migration in DU-145 cells. CONCLUSIONS: These findings suggest previously unobserved roles for bile acids as physiologically relevant molecules targeting hypoxic tumour progression

    Plasma metabolomic profile varies with glucocorticoid dose in patients with congenital adrenal hyperplasia

    Get PDF
    Glucocorticoid replacement therapy is the mainstay of treatment for congenital adrenal hyperplasia (CAH) but has a narrow therapeutic index and dose optimisation is challenging. Metabolomic profiling was carried out on plasma samples from 117 adults with 21-hydroxylase deficiency receiving their usual glucocorticoid replacement therapy who were part of the CaHASE study. Samples were profiled by using hydrophilic interaction chromatography with high resolution mass spectrometry. The patients were also profiled using nine routine clinical measures. The data were modelled by using both multivariate and univariate statistics by using the clinical metadata to inform the choice of patient groupings. Comparison of 382 metabolites amongst groups receiving different glucocorticoid doses revealed a clear distinction between patients receiving ≤5 mg (n = 64) and >5 mg (n = 53) daily prednisolone-equivalent doses. The 24 metabolites which were statistically significantly different between groups included free fatty acids, bile acids, and amino acid metabolites. Using 7 metabolites improved the receiver operating characteristic with area under the curve for predicting glucocorticoid dose of >0.9 with FDR adjusted P values in the range 3.3 E-04 -1.9 E-10. A combination of seven plasma metabolite biomarkers readily discriminates supraphysiological glucocorticoid replacement doses in patients with CAH

    Epigenetic control of the imprinted growth regulator Cdkn1c in cadmium-induced placental dysfunction

    No full text
    Cadmium (Cd) is a toxic metal ubiquitous in the environment. In utero, Cd is inefficiently transported to the foetus but causes foetal growth restriction (FGR), likely through impairment of the placenta where Cd accumulates. However, the underlying molecular mechanisms are poorly understood. Cd can modulate the expression of imprinted genes, defined by their transcription from one parental allele, which play critical roles in placental and foetal growth. The expression of imprinted genes is governed by DNA methylation at Imprinting Control Regions (ICRs), which are susceptible to environmental perturbation. The imprinted gene Cdkn1c/CDKN1C is a major regulator of placental development, is implicated in FGR, and shows increased expression in response to Cd exposure in mice. Here, we use a hybrid mouse model of in utero Cd exposure to determine if the increase in placental Cdkn1c expression is caused by changes to ICR DNA methylation and loss of imprinting (LOI). Consistent with prior studies, Cd causes FGR and impacts placental structure and Cdkn1c expression at late gestation. Using polymorphisms to distinguish parental alleles, we demonstrate that increased Cdkn1c expression is not driven by changes to DNA methylation or LOI. We show that Cdkn1c is expressed primarily in the placental labyrinth which is proportionally increased in size in response to Cd. We conclude that the Cd-associated increase in Cdkn1c expression can be fully explained by alterations to placental structure. These results have implications for understanding mechanisms of Cd-induced placental dysfunction and, more broadly, for the study of FGR associated with increased Cdkn1c/CDKN1C expression

    Bile acids alter male fertility through G-protein-coupled bile acid receptor 1 signaling pathways in mice

    No full text
    International audienceBile acids (BAs) are signaling molecules that are involved in many physiological functions, such as glucose and energy metabolism. These effects are mediated through activation of the nuclear and membrane receptors, farnesoid X receptor (FXR-α) and TGR5 (G-protein-coupled bile acid receptor 1; GPBAR1). Although both receptors are expressed within the testes, the potential effect of BAs on testis physiology and male fertility has not been explored thus far. Here, we demonstrate that mice fed a diet supplemented with cholic acid have reduced fertility subsequent to testicular defects. Initially, germ cell sloughing and rupture of the blood-testis barrier occur and are correlated with decreased protein accumulation of connexin-43 (Cx43) and N-cadherin, whereas at later stages, apoptosis of spermatids is observed. These abnormalities are associated with increased intratesticular BA levels in general and deoxycholic acid, a TGR5 agonist, in particular. We demonstrate here that Tgr5 is expressed within the germ cell lineage, where it represses Cx43 expression through regulation of the transcriptional repressor, T-box transcription factor 2 gene. Consistent with this finding, mice deficient for Tgr5 are protected against the deleterious testicular effects of BA exposure. CONCLUSIONS: These data identify the testis as a new target of BAs and emphasize TGR5 as a critical element in testicular pathophysiology. This work may open new perspectives on the potential effect of BAs on testis physiology during liver dysfunction
    corecore