795 research outputs found

    Reflector surface modelling - a European collaboration

    Get PDF
    The topic of this paper is the work carried out in Work Package 2.3-2 of the EU network ACE. This work package is concerned with the modelling of the surfaces of modern reflector antennas. In particular the problems associated with homogenisation of periodic structures are described together with an application example. An accurate MoM solutions for periodic structure is presented. A new, fast and very efficient interpolation technique for frequency selective surfaces is introduced and linked to high frequency techniques to speed up radiation calculation processes

    Sub-kelvin temperature management in ion traps for optical clocks

    Full text link
    The uncertainty of the ac Stark shift due to thermal radiation represents a major contribution to the systematic uncertainty budget of state-of-the-art optical atomic clocks. In the case of optical clocks based on trapped ions, the thermal behavior of the rf-driven ion trap must be precisely known. This determination is even more difficult when scalable linear ion traps are used. Such traps enable a more advanced control of multiple ions and have become a platform for new applications in quantum metrology, simulation and computation. Nevertheless, their complex structure makes it more difficult to precisely determine its temperature in operation and thus the related systematic uncertainty. We present here scalable linear ion traps for optical clocks, which exhibit very low temperature rise under operation. We use a finite-element model refined with experimental measurements to determine the thermal distribution in the ion trap and the temperature at the position of the ions. The trap temperature is investigated at different rf-drive frequencies and amplitudes with an infrared camera and integrated temperature sensors. We show that for typical trapping parameters for In+\mathrm{In}^{+}, Al+\mathrm{Al}^{+}, Lu+\mathrm{Lu}^{+}, Ca+\mathrm{Ca}^{+}, Sr+\mathrm{Sr}^{+} or Yb+\mathrm{Yb}^{+} ions, the temperature rise at the position of the ions resulting from rf heating of the trap stays below 700 mK and can be controlled with an uncertainty on the order of a few 100 mK maximum.Comment: 18 page

    Cardiac index monitoring by pulse contour analysis and thermodilution after pediatric cardiac surgery

    Get PDF
    ObjectivesTo validate a new device (PiCCO system; Pulsion Medical Systems, Munich, Germany), we compared cardiac index derived from transpulmonary thermodilution and from pulse contour analysis in pediatric patients after surgery for congenital heart disease. We performed a prospective clinical study in a pediatric cardiac intensive care unit of a university hospital.MethodsTwenty-four patients who had had cardiac surgery for congenital heart disease (median age 4.2 years, range 1.4-15.2 years) were investigated in the first 24 hours after admission to the intensive care unit. A 3F thermodilution catheter was inserted in the femoral artery. Intracardiac shunts were excluded by echocardiography intraoperatively or postoperatively. Cardiac index derived from pulse contour analysis was documented in each patient 1, 4, 8, 12, 16, 20, and 24 hours after admission to the intensive care unit. Subsequently, a set of three measurements of thermodilution cardiac indices derived by injections into a central venous line was performed and calculated by the PiCCO system.ResultsThe mean bias between cardiac indices derived by thermodilution and those derived by pulse contour analysis over all data points was 0.05 (SD 0.4) L · min · m−2 (95% confidence interval 0.01-0.10). A strong correlation between thermodilution and contour analysis cardiac indices was calculated (Pearson correlation coefficient r = 0.93; coefficient of determination r2 = 0.86).ConclusionsPulse contour analysis is a suitable method to monitor cardiac index over a wide range of indices after surgery for congenital heart disease in pediatric patients. Pulse contour analysis allows online monitoring of cardiac index. The PiCCO device can be recalibrated with the integrated transpulmonary thermodilution within a short time frame

    Quantum beat spectroscopy of repulsive Bose polarons

    Full text link
    The physics of impurities in a bosonic quantum environment is a paradigmatic and challenging many-body problem that remains to be understood in its full complexity. Here, this problem is investigated for impurities with strong repulsive interactions based on Ramsey interferometry in a quantum degenerate gas of 39K atoms. We observe an oscillatory signal that is consistent with a quantum beat between two co-existing coherent quasiparticle states: the attractive and repulsive polarons. The interferometric signal allows us to extract the polaron energies for a wide range of interaction strengths, complimenting earlier spectroscopic measurements. We furthermore identify several dynamical regimes towards the formation of the Bose polaron in good agreement with theory. Our results improve the understanding of quantum impurities interacting strongly with a bosonic environment, and demonstrate how quasiparticles as well as short-lived non-equilibrium many-body states can be probed using Ramsey interferometry

    SERS detection of the biomarker hydrogen cyanide from <em>Pseudomonas aeruginosa</em> cultures isolated from cystic fibrosis patients

    Get PDF
    Pseudomonas aeruginosa is the primary cause of chronic airway infections in cystic fibrosis (CF) patients. Persistent infections are seen from the first P. aeruginosa culture in about 75% of young CF patients, and it is important to discover new ways to detect P. aeruginosa at an earlier stage. The P. aeruginosa biomarker hydrogen cyanide (HCN) contains a triple bond, which is utilized in this study because of the resulting characteristic C≡N peak at 2135 cm(−1) in a Raman spectrum. The Raman signal was enhanced by surface-enhanced Raman spectroscopy (SERS) on a Au-coated SERS substrate. After long-term infection, a mutation in the patho-adaptive lasR gene can alter the expression of HCN, which is why it is sometimes not possible to detect HCN in the breath of chronically infected patients. Four P. aeruginosa reference strains and 12 clinical P. aeruginosa strains isolated from CF children were evaluated, and HCN was clearly detected from overnight cultures of all wild type-like isolates and half of the later isolates from the same patients. The clinical impact could be that P. aeruginosa infections could be detected at an earlier stage, because daily breath sampling with an immediate output could be possible with a point-of-care SERS device

    A micro-accelerometer MDO benchmark problem

    Get PDF
    Many optimization and coordination methods for multidisciplinary design optimization (MDO) have been proposed in the last three decades. Suitable MDO benchmark problems for testing and comparing these methods are few however. This article presents a new MDO benchmark problem based on the design optimization of an ADXL150 type lateral capacitive micro-accelerometer. The behavioral models describe structural and dynamic effects, as well as electrostatic and amplification circuit contributions. Models for important performance indicators such as sensitivity, range, noise, and footprint area are presented. Geometric and functional constraints are included in these models to enforce proper functioning of the device. The developed models are analytical, and therefore highly suitable for benchmark and educational purposes. Four different problem decompositions are suggested for four design cases, each of which can be used for testing MDO coordination algorithms. As a reference, results for an all-in-one implementation, and a number of augmented Lagrangian coordination algorithms are given. © 2009 The Author(s)

    One-dimensional Model of a Gamma Klystron

    Full text link
    A new scheme for amplification of coherent gamma rays is proposed. The key elements are crystalline undulators - single crystals with periodically bent crystallographic planes exposed to a high energy beam of charged particles undergoing channeling inside the crystals. The scheme consists of two such crystals separated by a vacuum gap. The beam passes the crystals successively. The particles perform undulator motion inside the crystals following the periodic shape of the crystallographic planes. Gamma rays passing the crystals parallel to the beam get amplified due to interaction with the particles inside the crystals. The term `gamma klystron' is proposed for the scheme because its operational principles are similar to those of the optical klystron. A more simple one-crystal scheme is considered as well for the sake of comparison. It is shown that the gamma ray amplification in the klystron scheme can be reached at considerably lower particle densities than in the one-crystal scheme, provided that the gap between the crystals is sufficiently large.Comment: RevTeX4, 22 pages, 4 figure

    Electron affinity of Li: A state-selective measurement

    Get PDF
    We have investigated the threshold of photodetachment of Li^- leading to the formation of the residual Li atom in the 2p2P2p ^2P state. The excited residual atom was selectively photoionized via an intermediate Rydberg state and the resulting Li^+ ion was detected. A collinear laser-ion beam geometry enabled both high resolution and sensitivity to be attained. We have demonstrated the potential of this state selective photodetachment spectroscopic method by improving the accuracy of Li electron affinity measurements an order of magnitude. From a fit to the Wigner law in the threshold region, we obtained a Li electron affinity of 0.618 049(20) eV.Comment: 5 pages,6 figures,22 reference
    • …
    corecore