1,355 research outputs found

    Disproportionation Phenomena on Free and Strained Sn/Ge(111) and Sn/Si(111) Surfaces

    Full text link
    Distortions of the 3×3\sqrt3\times\sqrt3 Sn/Ge(111) and Sn/Si(111) surfaces are shown to reflect a disproportionation of an integer pseudocharge, QQ, related to the surface band occupancy. A novel understanding of the (3×3)(3\times3)-1U (``1 up, 2 down'') and 2U (``2 up, 1 down'') distortions of Sn/Ge(111) is obtained by a theoretical study of the phase diagram under strain. Positive strain keeps the unstrained value Q=3 but removes distorsions. Negative strain attracts pseudocharge from the valence band causing first a (3×3)(3\times3)-2U distortion (Q=4) on both Sn/Ge and Sn/Si, and eventually a (3×3)(\sqrt3\times\sqrt3)-3U (``all up'') state with Q=6. The possibility of a fluctuating phase in unstrained Sn/Si(111) is discussed.Comment: Revtex, 5 pages, 3 figure

    Mid-Infrared Plasmonic Platform Based on n-Doped Ge-on-Si: Molecular Sensing with Germanium Nano-Antennas on Si

    Get PDF
    CMOS-compatible, heavily-doped semiconductor films are very promising for applications in mid-infrared plasmonic devices because the real part of their dielectric function is negative and broadly tunable in this wavelength range. In this work we investigate n-type doped germanium epilayers grown on Si substrates. We design and realize Ge nanoantennas on Si substrates demonstrating the presence of localized plasmon resonances, and exploit them for molecular sensing in the mid-infrared

    Mid-infrared intersubband absorption from p-Ge quantum wells grown on Si substrates

    Get PDF
    Mid-infrared intersubband absorption from p-Ge quantum wells with Si0.5Ge0.5 barriers grown on a Si substrate is demonstrated from 6 to 9 μm wavelength at room temperature and can be tuned by adjusting the quantum well thickness. Fourier transform infra-red transmission and photoluminescence measurements demonstrate clear absorption peaks corresponding to intersubband transitions among confined hole states. The work indicates an approach that will allow quantum well intersubband photodetectors to be realized on Si substrates in the important atmospheric transmission window of 8–13 μm

    On the enhancement of nuclear reaction rates in high-temperature plasma

    Get PDF
    We argue that the Maxwellian approximation can essentially underestimate the rates of some nuclear reactions in hot plasma under conditions very close to thermal equilibrium. This phenomenon is demonstrated explicitly on the example of reactions in self-sustained DT fusion plasma with admixture of light elements X = Li, Be, C. A kinetic analysis shows that the reactivity enhancement results from non-Maxwellian knock-on perturbations of ion distributions caused by close collisions with energetic fusion products. It is found that although the fraction of the knock-on ions is small, these particles appreciably affect the D+X and T+X reaction rates. The phenomenon discussed is likely to have general nature and can play role in other laboratory and probably astrophysical plasma processes.Comment: 12 pages, 4 figures, to be published in Phys. Lett.

    Mid-Infrared Intersubband Absorption from P-Ge Quantum Wells on Si

    Get PDF
    Mid-infrared intersubband absorption from p-Ge quantum wells with Si0.5Ge0.5 barriers grown on a Si substrate is demonstrated from 6 to 9 μm wavelength at room temperature and can be tuned by adjusting the quantum well thickness. Fourier transform infra-red spectroscopy measurements demonstrate clear absorption peaks corresponding to intersubband transitions among confined hole states. The work indicates an approach that will allow quantum well intersubband photodetectors to be realized on Si substrates in the important atmospheric transmission window of 8–13 μm

    Multistep, sequential control of the trafficking and function of the multiple sulfatase deficiency gene product, SUMF1 by PDI, ERGIC-53 and ERp44.

    Get PDF
    Sulfatase modifying factor 1 (SUMF1) encodes for the formylglicine generating enzyme, which activates sulfatases by modifying a key cysteine residue within their catalytic domains. SUMF1 is mutated in patients affected by multiple sulfatase deficiency, a rare recessive disorder in which all sulfatase activities are impaired. Despite the absence of canonical retention/retrieval signals, SUMF1 is largely retained in the endoplasmic reticulum (ER), where it exerts its enzymatic activity on nascent sulfatases. Part of SUMF1 is secreted and paracrinally taken up by distant cells. Here we show that SUMF1 interacts with protein disulfide isomerase (PDI) and ERp44, two thioredoxin family members residing in the early secretory pathway, and with ERGIC-53, a lectin that shuttles between the ER and the Golgi. Functional assays reveal that these interactions are crucial for controlling SUMF1 traffic and function. PDI couples SUMF1 retention and activation in the ER. ERGIC-53 and ERp44 act downstream, favoring SUMF1 export from and retrieval to the ER, respectively. Silencing ERGIC-53 causes proteasomal degradation of SUMF1, while down-regulating ERp44 promotes its secretion. When over-expressed, each of three interactors favors intracellular accumulation. Our results reveal a multistep control of SUMF1 trafficking, with sequential interactions dynamically determining ER localization, activity and secretion

    Surface Phase Transitions Induced by Electron Mediated Adatom-Adatom Interaction

    Full text link
    We propose that the indirect adatom-adatom interaction mediated by the conduction electrons of a metallic surface is responsible for the 3×33×3\sqrt{3}\times \sqrt{3}\Leftrightarrow 3\times 3 structural phase transitions observed in Sn/Ge (111) and Pb/Ge (111). When the indirect interaction overwhelms the local stress field imposed by the substrate registry, the system suffers a phonon instability, resulting in a structural phase transition in the adlayer. Our theory is capable of explaining all the salient features of the 3×33×3\sqrt{3}\times \sqrt{3}\Leftrightarrow 3\times 3 transitions observed in Sn/Ge (111) and Pb/Ge (111), and is in principle applicable to a wide class of systems whose surfaces are metallic before the transition.Comment: 4 pages, 5 figure

    Do gaming motives mediate between psychiatric symptoms and problematic gaming? An empirical survey study

    Get PDF
    Previous research has suggested that motives play an important role in several potentially addictive activities including online gaming. The aims of the present study were to (i) examine the mediation effect of different online gaming motives between psychiatric distress and problematic online gaming, and (ii) validate Italian versions of the Problematic Online Gaming Questionnaire, and the Motives for Online Gaming Questionnaire. Data collection took place online and targeted Italian-speaking online gamers active on popular Italian gaming forums, and/or Italian groups related to online games on social networking sites. The final sample size comprised 327 participants (mean age 23.1 years [SD = 7.0], 83.7% male). The two instruments showed good psychometric properties in the Italian sample. General psychiatric distress had both a significant direct effect on problematic online gaming and a significant indirect effect via two motives: escape and fantasy. Psychiatric symptoms are both directly and indirectly associated with problematic online gaming. Playing online games to escape and to avoid everyday problems appears to be a motivation associated with psychiatric distress and in predicting problematic gaming

    Charging Induced Emission of Neutral Atoms from NaCl Nanocube Corners

    Full text link
    Detachment of neutral cations/anions from solid alkali halides can in principle be provoked by donating/subtracting electrons to the surface of alkali halide crystals, but generally constitutes a very endothermic process. However, the amount of energy required for emission is smaller for atoms located in less favorable positions, such as surface steps and kinks. For a corner ion in an alkali halide cube the binding is the weakest, so it should be easier to remove that atom, once it is neutralized. We carried out first principles density functional calculations and simulations of neutral and charged NaCl nanocubes, to establish the energetics of extraction of neutralized corner ions. Following hole donation (electron removal) we find that detachment of neutral Cl corner atoms will require a limited energy of about 0.8 eV. Conversely, following the donation of an excess electron to the cube, a neutral Na atom is extractable from the corner at the lower cost of about 0.6 eV. Since the cube electron affinity level (close to that a NaCl(100) surface state, which we also determine) is estimated to lie about 1.8 eV below vacuum, the overall energy balance upon donation to the nanocube of a zero energy electron from vacuum will be exothermic. The atomic and electronic structure of the NaCl(100) surface, and of the nanocube Na and Cl corner vacancies are obtained and analyzed as a byproduct.Comment: 16 pages, 2 table, 7 figure
    corecore