686 research outputs found

    Magnetothermal and magnetorotational instabilities in hot accretion flows

    Full text link
    In a hot, dilute, magnetized accretion flow, the electron mean-free path can be much greater than the Larmor radius, thus thermal conduction is anisotropic and along magnetic field lines. In this case, if the temperature decreases outward, the flow may be subject to a buoyancy instability (the magnetothermal instability, or MTI). The MTI amplifies the magnetic field, and aligns field lines with the radial direction. If the accretion flow is differentially rotating, the magnetorotational instability (MRI) may also be present. Using two-dimensional, time-dependent magnetohydrodynamic simulations, we investigate the interaction between these two instabilities. We use global simulations that span over two orders of magnitude in radius, centered on the region around the Bondi radius where the infall time of gas is longer than the growth time of both the MTI and MRI. Significant amplification of the magnetic field is produced by both instabilities, although we find that the MTI primarily amplifies the radial component, and the MRI primarily the toroidal component, of the field, respectively. Most importantly, we find that if the MTI can amplify the magnetic energy by a factor FtF_t, and the MRI by a factor FrF_r, then when the MTI and MRI are both present, the magnetic energy can be amplified by a factor of Ft⋅FrF_t \cdot F_r. We therefore conclude that amplification of the magnetic energy by the MTI and MRI operates independently. We also find that the MTI contributes to the transport of angular momentum, because radial motions induced by the MTI increase the Maxwell (by amplifying the magnetic field) and Reynolds stresses. Finally, we find that thermal conduction decreases the slope of the radial temperature profile. The increased temperature near the Bondi radius decreases the mass accretion rate.Comment: 8 pages, 9 figures, accepted by MNRA

    On the Fate of Gas Accreting at a Low Rate onto a Black Hole

    Get PDF
    Gas supplied conservatively to a black hole at rates well below the Eddington rate may not be able to radiate effectively and the net energy flux, including the energy transported by the viscous torque, is likely to be close to zero at all radii. This has the consequence that the gas accretes with positive energy so that it may escape. Accordingly, we propose that only a small fraction of the gas supplied actually falls onto the black hole and that the binding energy it releases is transported radially outward by the torque so as to drive away the remainder in the form of a wind. This is a generalization of and an alternative to an "ADAF" solution. Some observational implications and possible ways to distinguish these two types of flow are briefly discussed.Comment: 5 pages, 2 figures, submitted to Monthly Notices of the Royal Astronomical Society Letter

    Angular momentum transport in protostellar discs

    Get PDF
    Angular momentum transport in protostellar discs can take place either radially, through turbulence induced by the magnetorotational instability (MRI), or vertically, through the torque exerted by a large-scale magnetic field that threads the disc. Using semi-analytic and numerical results, we construct a model of steady-state discs that includes vertical transport by a centrifugally driven wind as well as MRI-induced turbulence. We present approximate criteria for the occurrence of either one of these mechanisms in an ambipolar diffusion-dominated disc. We derive ``strong field'' solutions in which the angular momentum transport is purely vertical and ``weak field'' solutions that are the stratified-disc analogues of the previously studied MRI channel modes; the latter are transformed into accretion solutions with predominantly radial angular-momentum transport when we implement a turbulent-stress prescription based on published results of numerical simulations. We also analyze ``intermediate field strength'' solutions in which both modes of transport operate at the same radial location; we conclude, however, that significant spatial overlap of these two mechanisms is unlikely to occur in practice. To further advance this study, we have developed a general scheme that incorporates also the Hall and Ohm conductivity regimes in discs with a realistic ionization structure.Comment: 8 pages, 4 figures, 1 table; accepted for publication in MNRA

    Oscillation modes of relativistic slender tori

    Full text link
    Accretion flows with pressure gradients permit the existence of standing waves which may be responsible for observed quasi-periodic oscillations (QPO's) in X-ray binaries. We present a comprehensive treatment of the linear modes of a hydrodynamic, non-self-gravitating, polytropic slender torus, with arbitrary specific angular momentum distribution, orbiting in an arbitrary axisymmetric spacetime with reflection symmetry. We discuss the physical nature of the modes, present general analytic expressions and illustrations for those which are low order, and show that they can be excited in numerical simulations of relativistic tori. The mode oscillation spectrum simplifies dramatically for near Keplerian angular momentum distributions, which appear to be generic in global simulations of the magnetorotational instability. We discuss our results in light of observations of high frequency QPO's, and point out the existence of a new pair of modes which can be in an approximate 3:2 ratio for arbitrary black hole spins and angular momentum distributions, provided the torus is radiation pressure dominated. This mode pair consists of the axisymmetric vertical epicyclic mode and the lowest order axisymmetric breathing mode.Comment: submitted to MNRA

    The signature of the magnetorotational instability in the Reynolds and Maxwell stress tensors in accretion discs

    Full text link
    The magnetorotational instability is thought to be responsible for the generation of magnetohydrodynamic turbulence that leads to enhanced outward angular momentum transport in accretion discs. Here, we present the first formal analytical proof showing that, during the exponential growth of the instability, the mean (averaged over the disc scale-height) Reynolds stress is always positive, the mean Maxwell stress is always negative, and hence the mean total stress is positive and leads to a net outward flux of angular momentum. More importantly, we show that the ratio of the Maxwell to the Reynolds stresses during the late times of the exponential growth of the instability is determined only by the local shear and does not depend on the initial spectrum of perturbations or the strength of the seed magnetic. Even though we derived these properties of the stress tensors for the exponential growth of the instability in incompressible flows, numerical simulations of shearing boxes show that this characteristic is qualitatively preserved under more general conditions, even during the saturated turbulent state generated by the instability.Comment: 9 pages, 4 figures. Minor revisions. Accepted for publication in MNRA

    A Magnetohydrodynamic Nonradiative Accretion Flow in Three Dimensions

    Get PDF
    We present a global magnetohydrodynamic (MHD) three dimensional simulation of a nonradiative accretion flow originating in a pressure supported torus. The evolution is controlled by the magnetorotational instability which produces turbulence. The flow forms a nearly Keplerian disk. The total pressure scale height in this disk is comparable to the vertical size of the initial torus. Gas pressure dominates only near the equator; magnetic pressure is more important in the surrounding atmosphere. A magnetically dominated bound outflow is driven from the disk. The accretion rate through the disk exceeds the final rate into the hole, and a hot torus forms inside 10 r_g. Hot gas, pushed up against the centrifugal barrier and confined by magnetic pressure, is ejected in a narrow, unbound, conical outflow. The dynamics are controlled by magnetic turbulence, not thermal convection, and a hydrodynamic alpha model is inadequate to describe the flow. The limitations of two dimensional MHD simulations are also discussed.Comment: 5 pages, 2 figures, submitted to ApJ Letters. For web version and mpeg animations see http://www.astro.virginia.edu/~jh8h/nraf

    On Nonshearing Magnetic Configurations in Differentially Rotating Disks

    Get PDF
    A new class of disk MHD equilibrium solutions is described, which is valid within the standard local (``shearing sheet'') approximation scheme. These solutions have the following remarkable property: velocity streamlines and magnetic lines of force rotate rigidly, even in the presence of differential rotation. This situation comes about because the Lorentz forces acting upon modified epicycles compel fluid elements to follow magnetic lines of force. Field line (and streamline) configurations may be elliptical or hyperbolic, prograde or retrograde. These structures have previously known hydrodynamical analogs: the ``planet'' solutions described by Goodman, Narayan, & Goldreich. The primary focus of this investigation is configurations in the disk plane. A related family of solutions lying in a vertical plane is briefly discussed; other families of solutions may exist. Whether these MHD structures are stable is not yet known, but could readily be determined by three-dimensional simulations. If stable or quasi-stable, these simple structures may find important applications in both accretion and galactic disks

    Vortex generation in protoplanetary disks with an embedded giant planet

    Full text link
    Vortices in protoplanetary disks can capture solid particles and form planetary cores within shorter timescales than those involved in the standard core-accretion model. We investigate vortex generation in thin unmagnetized protoplanetary disks with an embedded giant planet with planet to star mass ratio 10−410^{-4} and 10−310^{-3}. Two-dimensional hydrodynamical simulations of a protoplanetary disk with a planet are performed using two different numerical methods. The results of the non-linear simulations are compared with a time-resolved modal analysis of the azimuthally averaged surface density profiles using linear perturbation theory. Finite-difference methods implemented in polar coordinates generate vortices moving along the gap created by Neptune-mass to Jupiter-mass planets. The modal analysis shows that unstable modes are generated with growth rate of order 0.3ΩK0.3 \Omega_K for azimuthal numbers m=4,5,6, where ΩK\Omega_K is the local Keplerian frequency. Shock-capturing Cartesian-grid codes do not generate very much vorticity around a giant planet in a standard protoplanetary disk. Modal calculations confirm that the obtained radial profiles of density are less susceptible to the growth of linear modes on timescales of several hundreds of orbital periods. Navier-Stokes viscosity of the order Îœ=10−5\nu=10^{-5} (in units of a2Ωpa^2 \Omega_p) is found to have a stabilizing effect and prevents the formation of vortices. This result holds at high resolution runs and using different types of boundary conditions. Giant protoplanets of Neptune-mass to Jupiter-mass can excite the Rossby wave instability and generate vortices in thin disks. The presence of vortices in protoplanetary disks has implications for planet formation, orbital migration, and angular momentum transport in disks.Comment: 14 pages, 15 figures, accepted for publication in A&
    • 

    corecore