4,071 research outputs found
Observations of Ultracool White Dwarfs
We present new spectroscopic and photometric measurements of the white dwarfs LHS 3250 and WD 0346+246. Along with F351-50, these white dwarfs are the coolest ones known, all with effective temperatures below 4000 K. Their membership in the Galactic halo population is discussed, and detailed comparisons of all three objects with new atmosphere models are presented. The new models consider the effects of mixed H/He atmospheres and indicate that WD 0346+246 and F351-50 have predominantly helium atmospheres with only traces of hydrogen. LHS 3250 may be a double degenerate whose average radiative temperature is between 2000 and 4000 K, but the new models fail to explain this object
NASA-JSC antenna near-field measurement system
Work was completed on the near-field range control software. The capabilities of the data processing software were expanded with the addition of probe compensation. In addition, the user can process the measured data from the same computer terminal used for range control. The design of the laser metrology system was completed. It provides precise measruement of probe location during near-field measurements as well as position data for control of the translation beam and probe cart. A near-field range measurement system was designed, fabricated, and tested
Ideologies of time: How elite corporate actors engage the future
Our paper deals with how elite corporate actors in a Western capitalist-democratic society conceive of and prepare for the future. Paying attention to how senior officers of ten important Danish companies make sense of the future will help us to identify how particular temporal narratives are ideologically marked. This ideological dimension offers a common sense frame that is structured around a perceived inevitability of capitalism, a market economy as the basic organizational structure of the social and economic order, and an assumption of confident access to the future. Managers envisage their organization?s future and make plans for organizational action in a space where ?business as usual? reigns, and there is little engagement with the future as fundamentally open; as a time-yet-to-come. In using a conceptual lens inspired by the work of Fredric Jameson, we first explore the details of this presentism and a particular colonization of the future, and then linger over small disruptions in the narratives of our interviewees which point to what escapes or jars their common sense frame, explore the implicit meanings they assign to their agency, and also find clues and traces of temporal actions and strategies in their narratives that point to a subtly different engagement with time
Identification of a novel retroviral gene unique to human immunodeficiency virus type 2 and simian immunodeficiency virus SIVMAC
Human and simian immunodeficiency-associated retroviruses are extraordinarily complex, containing at least five genes, tat, art, sor, R, and 3' orf, in addition to the structural genes gag, pol, and env. Recently, nucleotide sequence analysis of human immunodeficiency virus type 2 (HIV-2) and simian immunodeficiency virus SIVMAC revealed the existence of still another open reading frame, termed X, which is highly conserved between these two viruses but absent from HIV-1. In this report, we demonstrate for the first time that the X open reading frame represents a functional retroviral gene in both HIV-2 and SIVMAC and that it encodes a virion-associated protein of 14 and 12 kilodaltons, respectively. We also describe the production of recombinant TrpE/X fusion proteins in Escherichia coli and show that sera from some HIV-2-infected individuals specifically recognize these proteins
The UTMOST: A hybrid digital signal processor transforms the MOST
The Molonglo Observatory Synthesis Telescope (MOST) is an 18,000 square meter
radio telescope situated some 40 km from the city of Canberra, Australia. Its
operating band (820-850 MHz) is now partly allocated to mobile phone
communications, making radio astronomy challenging. We describe how the
deployment of new digital receivers (RX boxes), Field Programmable Gate Array
(FPGA) based filterbanks and server-class computers equipped with 43 GPUs
(Graphics Processing Units) has transformed MOST into a versatile new
instrument (the UTMOST) for studying the dynamic radio sky on millisecond
timescales, ideal for work on pulsars and Fast Radio Bursts (FRBs). The
filterbanks, servers and their high-speed, low-latency network form part of a
hybrid solution to the observatory's signal processing requirements. The
emphasis on software and commodity off-the-shelf hardware has enabled rapid
deployment through the re-use of proven 'software backends' for its signal
processing. The new receivers have ten times the bandwidth of the original MOST
and double the sampling of the line feed, which doubles the field of view. The
UTMOST can simultaneously excise interference, make maps, coherently dedisperse
pulsars, and perform real-time searches of coherent fan beams for dispersed
single pulses. Although system performance is still sub-optimal, a pulsar
timing and FRB search programme has commenced and the first UTMOST maps have
been made. The telescope operates as a robotic facility, deciding how to
efficiently target pulsars and how long to stay on source, via feedback from
real-time pulsar folding. The regular timing of over 300 pulsars has resulted
in the discovery of 7 pulsar glitches and 3 FRBs. The UTMOST demonstrates that
if sufficient signal processing can be applied to the voltage streams it is
possible to perform innovative radio science in hostile radio frequency
environments.Comment: 12 pages, 6 figure
Five new real-time detections of Fast Radio Bursts with UTMOST
We detail a new fast radio burst (FRB) survey with the Molonglo Radio
Telescope, in which six FRBs were detected between June 2017 and December 2018.
By using a real-time FRB detection system, we captured raw voltages for five of
the six events, which allowed for coherent dedispersion and very high time
resolution (10.24 s) studies of the bursts. Five of the FRBs show temporal
broadening consistent with interstellar and/or intergalactic scattering, with
scattering timescales ranging from 0.16 to 29.1 ms. One burst, FRB181017, shows
remarkable temporal structure, with 3 peaks each separated by 1 ms. We searched
for phase-coherence between the leading and trailing peaks and found none,
ruling out lensing scenarios. Based on this survey, we calculate an all-sky
rate at 843 MHz of events sky day to a fluence
limit of 8 Jy-ms: a factor of 7 below the rates estimated from the Parkes and
ASKAP telescopes at 1.4 GHz assuming the ASKAP-derived spectral index
(). Our results suggest that FRB
spectra may turn over below 1 GHz. Optical, radio and X-ray followup has been
made for most of the reported bursts, with no associated transients found. No
repeat bursts were found in the survey.Comment: 13 pages, 11 figures, submitted to MNRA
Polarization studies of Rotating Radio Transients
We study the polarization properties of 22 known rotating radio transients
(RRATs) with the 64-m Parkes radio telescope and present the Faraday rotation
measures (RMs) for the 17 with linearly polarized flux exceeding the off-pulse
noise by 3. Each RM was estimated using a brute-force search over trial
RMs that spanned the maximum measurable range (in steps of 1 ), followed by an
iterative refinement algorithm. The measured RRAT RMs are in the range |RM|
to rad m with an average linear polarization
fraction of per cent. Individual single pulses are observed to be up
to 100 per cent linearly polarized. The RMs of the RRATs and the corresponding
inferred average magnetic fields (parallel to the line-of-sight and weighted by
the free electron density) are observed to be consistent with the Galactic
plane pulsar population. Faraday rotation analyses are typically performed on
accumulated pulsar data, for which hundreds to thousands of pulses have been
integrated, rather than on individual pulses. Therefore, we verified the
iterative refinement algorithm by performing Monte Carlo simulations of
artificial single pulses over a wide range of S/N and RM. At and above a S/N of
17 in linearly polarized flux, the iterative refinement recovers the simulated
RM value 100 per cent of the time with a typical mean uncertainty of
rad m. The method described and validated here has also been
successfully used to determine reliable RMs of several fast radio bursts (FRBs)
discovered at Parkes.Comment: Submitted to MNRAS, 10 pages, 6 figure
- …
