552 research outputs found

    Bayesian estimation of incomplete data using conditionally specified priors

    Get PDF
    In this paper, a class of conjugate prior for estimating incomplete count data based on a broad class of conjugate prior distributions is presented. The new class of prior distributions arises from a conditional perspective, making use of the conditional specification methodology and can be considered as the generalisation of the form of prior distributions that have been used previously in the estimation of in- complete count data well. Finally, some examples of simulated and real data are given

    Scope for Credit Risk Diversification

    Get PDF
    This paper considers a simple model of credit risk and derives the limit distribution of losses under different assumptions regarding the structure of systematic risk and the nature of exposure or firm heterogeneity. We derive fat-tailed correlated loss distributions arising from Gaussian risk factors and explore the potential for risk diversification. Where possible the results are generalised to non-Gaussian distributions. The theoretical results indicate that if the firm parameters are heterogeneous but come from a common distribution, for sufficiently large portfolios there is no scope for further risk reduction through active portfolio management. However, if the firm parameters come from different distributions, then further risk reduction is possible by changing the portfolio weights. In either case, neglecting parameter heterogeneity can lead to underestimation of expected losses. But, once expected losses are controlled for, neglecting parameter heterogeneity can lead to overestimation of risk, whether measured by unexpected loss or value-at-risk

    On Quantum State Observability and Measurement

    Full text link
    We consider the problem of determining the state of a quantum system given one or more readings of the expectation value of an observable. The system is assumed to be a finite dimensional quantum control system for which we can influence the dynamics by generating all the unitary evolutions in a Lie group. We investigate to what extent, by an appropriate sequence of evolutions and measurements, we can obtain information on the initial state of the system. We present a system theoretic viewpoint of this problem in that we study the {\it observability} of the system. In this context, we characterize the equivalence classes of indistinguishable states and propose algorithms for state identification

    The Role of Industry, Geography and Firm Heterogeneity in Credit Risk Diversification

    Get PDF
    In theory the potential for credit risk diversification for banks could be substantial. Portfolio diversification is driven broadly by two characteristics: the degree to which systematic risk factors are correlated with each other and the degree of dependence individual firms have to the different types of risk factors. We propose a model for exploring these dimensions of credit risk diversification: across industry sectors and across different countries or regions. We find that full firm-level parameter heterogeneity matters a great deal for capturing differences in simulated credit loss distributions. Imposing homogeneity results in overly skewed and fat-tailed loss distributions. These differences become more pronounced in the presence of systematic risk factor shocks: increased parameter heterogeneity greatly reduces shock sensitivity. Allowing for regional parameter heterogeneity seems to better approximate the loss distributions generated by the fully heterogeneous model than allowing just for industry heterogeneity. The regional model also exhibits less shock sensitivity

    Systemic Risk and Default Clustering for Large Financial Systems

    Full text link
    As it is known in the finance risk and macroeconomics literature, risk-sharing in large portfolios may increase the probability of creation of default clusters and of systemic risk. We review recent developments on mathematical and computational tools for the quantification of such phenomena. Limiting analysis such as law of large numbers and central limit theorems allow to approximate the distribution in large systems and study quantities such as the loss distribution in large portfolios. Large deviations analysis allow us to study the tail of the loss distribution and to identify pathways to default clustering. Sensitivity analysis allows to understand the most likely ways in which different effects, such as contagion and systematic risks, combine to lead to large default rates. Such results could give useful insights into how to optimally safeguard against such events.Comment: in Large Deviations and Asymptotic Methods in Finance, (Editors: P. Friz, J. Gatheral, A. Gulisashvili, A. Jacqier, J. Teichmann) , Springer Proceedings in Mathematics and Statistics, Vol. 110 2015

    A fresh look at instrumentation - an introduction

    Get PDF
    The theme of "instrumentation between science, state and industry" does not square well with the venerable discourse which opposes "science" and "technology" in social studies of science. In this discourse, "technology" stands for the contrary of "science"; it represents the practical uses of science in society at large and is understood as separate from the somehow autonomous sphere of "science" (Layton 1971a). This vocabulary, widespread as it may be, is not very useful for our purposes, and, for that matter, for any inquiry into the role of instruments. Technology, in the sense of technical instruments and the knowledge systems that go with them, pervades all societal systems. There are technologies of science, of industry, of state, and so forth, and it would be ill-advised to assume that, in the end, they all flow out of "science." But even if the crude opposition of science and technology has little analytic value, the dual problem remains: how to effectively conceive the dynamic relationship between scientific spheres and other societal spheres, and how to conceive the role that technological matters play in this relationship

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets
    corecore