1,820 research outputs found
An assessment of financial sector rescue programmes
We analyse the wide array of rescue programmes adopted in several countries, following Lehman Brothers’ default in September 2008, in order to support banks and other financial institutions. We first provide an overview of the programmes, comparing their characteristics, magnitudes and participation rates across countries. We then consider the effects of the programmes on banks’ risk and valuation, looking at the behaviour of CDS premia and stock prices. We then proceed to analyse the issuance of government guaranteed bonds by banks, examining their impact on banks’ funding and highlighting undesired effects and distortions. Finally, we briefly review the recent evolution of bank lending to the private sector. We draw policy implications, in particular as regards the way of mitigating the distortions implied by such programmes and the need for an exit strategy.bank asset guarantees, capital injection, banks, financial sector, financial crisis, bank consolidation, bank mergers and acquisitions, event studies, government guaranteed bonds, credit crunch, exit strategy
Charging induced asymmetry in molecular conductors
We investigate the origin of asymmetry in various measured current-voltage
(I-V) characteristics of molecules with no inherent spatial asymmetry, with
particular focus on a recent break junction measurement. We argue that such
asymmetry arises due to unequal coupling with the contacts and a consequent
difference in charging effects, which can only be captured in a self-consistent
model for molecular conduction. The direction of the asymmetry depends on the
sign of the majority carriers in the molecule. For conduction through highest
occupied molecular orbitals (i.e. HOMO or p-type conduction), the current is
smaller for positive voltage on the stronger contact, while for conduction
through lowest unoccupied molecular orbitals (i.e. LUMO or n-type conduction),
the sense of the asymmetry is reversed. Within an extended Huckel description
of the molecular chemistry and the contact microstructure (with two adjustable
parameters, the position of the Fermi energy and the sulphur-gold bond length),
an appropriate description of Poisson's equation, and a self-consistently
coupled non-equilibrium Green's function (NEGF) description of transport, we
achieve good agreement between theoretical and experimental I-V
characteristics, both in shape as well as overall magnitude.Comment: length of the paper has been extended (4 pages to 6 pages), two new
figures have been added (3 figures to 5 figures), has been accepted for PR
Electrical Conductance of Molecular Wires
Molecular wires (MW) are the fundamental building blocks for molecular
electronic devices. They consist of a molecular unit connected to two continuum
reservoirs of electrons (usually metallic leads). We rely on Landauer theory as
the basis for studying the conductance properties of MW systems. This relates
the lead to lead current to the transmission probability for an electron to
scatter through the molecule. Two different methods have been developed for the
study of this scattering. One is based on a solution of the Lippmann-Schwinger
equation and the other solves for the {\bf t} matrix using Schroedinger's
equation. We use our methodology to study two problems of current interest. The
first MW system consists of 1,4 benzene-dithiolate (BDT) bonded to two gold
nanocontacts. Our calculations show that the conductance is sensitive to the
chemical bonding between the molecule and the leads. The second system we study
highlights the interesting phenomenon of antiresonances in MW. We derive an
analytic formula predicting at what energies antiresonances should occur in the
transmission spectra of MW. A numerical calculation for a MW consisting of
filter molecules attached to an active molecule shows the existence of an
antiresonance at the energy predicted by our formula.Comment: 14 pages, 5 figure
Antiresonances in Molecular Wires
We present analytic and numerical studies based on Landauer theory of
conductance antiresonances of molecular wires. Our analytic treatment is a
solution of the Lippmann-Schwinger equation for the wire that includes the
effects of the non-orthogonality of the atomic orbitals on different atoms
exactly. The problem of non-orthogonality is treated by solving the transport
problem in a new Hilbert space which is spanned by an orthogonal basis. An
expression is derived for the energies at which antiresonances should occur for
a molecular wire connected to a pair of single-channel 1D leads. From this
expression we identify two distinct mechanisms that give rise to antiresonances
under different circumstances. The exact treatment of non-orthogonality in the
theory is found to be necessary to obtain reliable results. Our numerical
simulations extend this work to multichannel leads and to molecular wires
connected to 3D metallic nanocontacts. They demonstrate that our analytic
results also provide a good description of these more complicated systems
provided that certain well-defined conditions are met. These calculations
suggest that antiresonances should be experimentally observable in the
differential conductance of molecular wires of certain types.Comment: 22 pages, 5 figure
A mesoscopic ring as a XNOR gate: An exact result
We describe XNOR gate response in a mesoscopic ring threaded by a magnetic
flux . The ring is attached symmetrically to two semi-infinite
one-dimensional metallic electrodes and two gate voltages, viz, and
, are applied in one arm of the ring which are treated as the inputs of
the XNOR gate. The calculations are based on the tight-binding model and the
Green's function method, which numerically compute the conductance-energy and
current-voltage characteristics as functions of the ring-to-electrode coupling
strength, magnetic flux and gate voltages. Our theoretical study shows that,
for a particular value of () (, the elementary
flux-quantum), a high output current (1) (in the logical sense) appears if both
the two inputs to the gate are the same, while if one but not both inputs are
high (1), a low output current (0) results. It clearly exhibits the XNOR gate
behavior and this aspect may be utilized in designing an electronic logic gate.Comment: 8 pages, 5 figure
Precursors prior to Type IIn supernova explosions are common: precursor rates, properties, and correlations
There is a growing number of supernovae (SNe), mainly of Type IIn, which
present an outburst prior to their presumably final explosion. These precursors
may affect the SN display, and are likely related to some poorly charted
phenomena in the final stages of stellar evolution. Here we present a sample of
16 SNe IIn for which we have Palomar Transient Factory (PTF) observations
obtained prior to the SN explosion. By coadding these images taken prior to the
explosion in time bins, we search for precursor events. We find five Type IIn
SNe that likely have at least one possible precursor event, three of which are
reported here for the first time. For each SN we calculate the control time.
Based on this analysis we find that precursor events among SNe IIn are common:
at the one-sided 99% confidence level, more than 50% of SNe IIn have at least
one pre-explosion outburst that is brighter than absolute magnitude -14, taking
place up to 1/3 yr prior to the SN explosion. The average rate of such
precursor events during the year prior to the SN explosion is likely larger
than one per year, and fainter precursors are possibly even more common. We
also find possible correlations between the integrated luminosity of the
precursor, and the SN total radiated energy, peak luminosity, and rise time.
These correlations are expected if the precursors are mass-ejection events, and
the early-time light curve of these SNe is powered by interaction of the SN
shock and ejecta with optically thick circumstellar material.Comment: 15 pages, 20 figures, submitted to Ap
Orbital Interaction Mechanisms of Conductance Enhancement and Rectification by Dithiocarboxylate Anchoring Group
We study computationally the electron transport properties of
dithiocarboxylate terminated molecular junctions. Transport properties are
computed self-consistently within density functional theory and nonequilibrium
Green's functions formalism. A microscopic origin of the experimentally
observed current amplification by dithiocarboxylate anchoring groups is
established. For the 4,4'-biphenyl bis(dithiocarboxylate) junction, we find
that the interaction of the lowest unoccupied molecular orbital (LUMO) of the
dithiocarboxylate anchoring group with LUMO and highest occupied molecular
orbital (HOMO) of the biphenyl part results in bonding and antibonding
resonances in the transmission spectrum in the vicinity of the electrode Fermi
energy. A new microscopic mechanism of rectification is predicted based on the
electronic structure of asymmetrical anchoring groups. We show that the peaks
in the transmission spectra of 4'-thiolato-biphenyl-4-dithiocarboxylate
junction respond differently to the applied voltage. Depending upon the origin
of a transmission resonance in the orbital interaction picture, its energy can
be shifted along with the chemical potential of the electrode to which the
molecule is more strongly or more weakly coupled
Electron transport through dipyrimidinyl-diphenyl diblock molecular wire: protonation effect
Recently, rectifying direction inversion has been observed in
dipyrimidinyl-diphenyl (PMPH) diblock molecular wire [J. Am. Chem. Soc. (2005)
127, 10456], and a protonation mechanism was suggested to explain this
interesting phenomena. In this paper, we study the protonation effect on
transport properties of PMPH molecule by first principles calculations. No
significant rectification is found for the pristine diblock molecular wire.
Protonation leads to conductance enhancement and rectification. However, for
all considered junctions with rectifying effect, the preferential current
directions are samely from dipyrimidinyl side to diphenyl side. Effect of
molecule-electrode anchoring geometry is studied, and it is not responsible for
the discrepancy between experiment and theory.Comment: 17 pages, 8 figure
Bi-stable tunneling current through a molecular quantum dot
An exact solution is presented for tunneling through a negative-U d-fold
degenerate molecular quantum dot weakly coupled to electrical leads. The tunnel
current exhibits hysteresis if the level degeneracy of the negative-U dot is
larger than two (d>2). Switching occurs in the voltage range V1 < V < V2 as a
result of attractive electron correlations in the molecule, which open up a new
conducting channel when the voltage is above the threshold bias voltage V2.
Once this current has been established, the extra channel remains open as the
voltage is reduced down to the lower threshold voltage V1. Possible
realizations of the bi-stable molecular quantum dots are fullerenes, especially
C60, and mixed-valence compounds.Comment: 5 pages, 1 figure. (v2) Figure updated to compare the current
hysteresis for degeneracies d=4 and d>>1 of the level in the dot, minor
corrections in the text. To appear in Phys. Rev.
Electrostatic potential profiles of molecular conductors
The electrostatic potential across a short ballistic molecular conductor
depends sensitively on the geometry of its environment, and can affect its
conduction significantly by influencing its energy levels and wave functions.
We illustrate some of the issues involved by evaluating the potential profiles
for a conducting gold wire and an aromatic phenyl dithiol molecule in various
geometries. The potential profile is obtained by solving Poisson's equation
with boundary conditions set by the contact electrochemical potentials and
coupling the result self-consistently with a nonequilibrium Green's function
(NEGF) formulation of transport. The overall shape of the potential profile
(ramp vs. flat) depends on the feasibility of transverse screening of electric
fields. Accordingly, the screening is better for a thick wire, a multiwalled
nanotube or a close-packed self-assembled monolayer (SAM), in comparison to a
thin wire, a single-walled nanotube or an isolated molecular conductor. The
electrostatic potential further governs the alignment or misalignment of
intramolecular levels, which can strongly influence the molecular I-V
characteristic. An external gate voltage can modify the overall potential
profile, changing the current-voltage (I-V) characteristic from a resonant
conducting to a saturating one. The degree of saturation and gate modulation
depends on the metal-induced-gap states (MIGS) and on the electrostatic gate
control parameter set by the ratio of the gate oxide thickness to the channel
length.Comment: to be published in Phys. Rev. B 69, No.3, 0353XX (2004
- …
