520 research outputs found
Spin pumping damping and magnetic proximity effect in Pd and Pt spin-sink layers
We investigated the spin pumping damping contributed by paramagnetic layers
(Pd, Pt) in both direct and indirect contact with ferromagnetic
NiFe films. We find a nearly linear dependence of the
interface-related Gilbert damping enhancement on the heavy-metal
spin-sink layer thicknesses t in direct-contact
NiFe/(Pd, Pt) junctions, whereas an exponential dependence is
observed when NiFe and (Pd, Pt) are separated by \unit[3]{nm} Cu.
We attribute the quasi-linear thickness dependence to the presence of induced
moments in Pt, Pd near the interface with NiFe, quantified using
X-ray magnetic circular dichroism (XMCD) measurements. Our results show that
the scattering of pure spin current is configuration-dependent in these systems
and cannot be described by a single characteristic length
High domain wall velocities induced by current in ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy
Current-induced domain wall (DW) displacements in an array of ultrathin
Pt/Co/AlOx wires with perpendicular magnetic anisotropy have been directly
observed by wide field Kerr microscopy. DWs in all wires in the array were
driven simultaneously and their displacement on the micrometer-scale was
controlled by the current pulse amplitude and duration. At the lower current
densities where DW displacements were observed (j less than or equal to 1.5 x
10^12 A/m^2), the DW motion obeys a creep law. At higher current density (j =
1.8 x 10^12 A/m^2), zero-field average DW velocities up to 130 +/- 10 m/s were
recorded.Comment: Minor changes to Fig. 1(b) and text, correcting for the fact that
domain walls were subsequently found to move counter to the electron flow.
References update
Spin injection in Silicon at zero magnetic field
In this letter, we show efficient electrical spin injection into a SiGe based
\textit{p-i-n} light emitting diode from the remanent state of a
perpendicularly magnetized ferromagnetic contact. Electron spin injection is
carried out through an alumina tunnel barrier from a Co/Pt thin film exhibiting
a strong out-of-plane anisotropy. The electrons spin polarization is then
analysed through the circular polarization of emitted light. All the light
polarization measurements are performed without an external applied magnetic
field \textit{i.e.} in remanent magnetic states. The light polarization as a
function of the magnetic field closely traces the out-of-plane magnetization of
the Co/Pt injector. We could achieve a circular polarization degree of the
emitted light of 3 % at 5 K. Moreover this light polarization remains almost
constant at least up to 200 K.Comment: accepted in AP
A northeast trending structural deformation zone near North Hinder
A northeast trending sequence of structural deformations east on North Hinder on the Belgian continental shelf and adjacent areas seems to be the surface expression of deeper faults, cutting across the whole width of the London-Brabant Massif in the axial zone of the eastern Channel. These fractures have probably been reactivated in a wrench-fault style in tertiary time
Electric-field control of domain wall nucleation and pinning in a metallic ferromagnet
The electric (E) field control of magnetic properties opens the prospects of
an alternative to magnetic field or electric current activation to control
magnetization. Multilayers with perpendicular magnetic anisotropy (PMA) have
proven to be particularly sensitive to the influence of an E-field due to the
interfacial origin of their anisotropy. In these systems, E-field effects have
been recently applied to assist magnetization switching and control domain wall
(DW) velocity. Here we report on two new applications of the E-field in a
similar material : controlling DW nucleation and stopping DW propagation at the
edge of the electrode
Modulating spin transfer torque switching dynamics with two orthogonal spin-polarizers by varying the cell aspect ratio
We study in-plane magnetic tunnel junctions with additional perpendicular
polarizer for subnanosecond-current-induced switching memories. The
spin-transfer-torque switching dynamics was studied as a function of the cell
aspect ratio both experimentally and by numerical simulations using the
macrospin model. We show that the anisotropy field plays a significant role in
the dynamics, along with the relative amplitude of the two spin-torque
contributions. This was confirmed by micromagnetic simulations. Real-time
measurements of the reversal were performed with samples of low and high aspect
ratio. For low aspect ratios, a precessional motion of the magnetization was
observed and the effect of temperature on the precession coherence was studied.
For high aspect ratios, we observed magnetization reversals in less than 1 ns
for high enough current densities, the final state being controlled by the
current direction in the magnetic tunnel junction cell.Comment: 6 pages, 7 figure
Electrical spin injection and detection in Germanium using three terminal geometry
In this letter, we report on successful electrical spin injection and
detection in \textit{n}-type germanium-on-insulator (GOI) using a
Co/Py/AlO spin injector and 3-terminal non-local measurements. We
observe an enhanced spin accumulation signal of the order of 1 meV consistent
with the sequential tunneling process via interface states in the vicinity of
the AlO/Ge interface. This spin signal is further observable up to
220 K. Moreover, the presence of a strong \textit{inverted} Hanle effect points
at the influence of random fields arising from interface roughness on the
injected spins.Comment: 4 pages, 3 figure
The domain wall spin torque-meter
We report the direct measurement of the non-adiabatic component of the
spin-torque in domain walls. Our method is independent of both the pinning of
the domain wall in the wire as well as of the Gilbert damping parameter. We
demonstrate that the ratio between the non-adiabatic and the adiabatic
components can be as high as 1, and explain this high value by the importance
of the spin-flip rate to the non-adiabatic torque. Besides their fundamental
significance these results open the way for applications by demonstrating a
significant increase of the spin torque efficiency.Comment: 12 pages plus supplementary note
Photometric properties of resolved and unresolved magnetic elements
We investigate the photometric signature of magnetic flux tubes in the solar
photosphere. We developed two dimensional, static numerical models of isolated
and clustered magnetic flux tubes. We investigated the emergent intensity
profiles at different lines-of-sight for various spatial resolutions and
opacity models. We found that both geometric and photometric properties of
bright magnetic features are determined not only by the physical properties of
the tube and its surroundings, but also by the particularities of the
observations, including the line/continuum formation height, the spatial
resolution and the image analyses techniques applied. We show that some
observational results presented in the literature can be interpreted by
considering bright magnetic features to be clusters of smaller elements, rather
than a monolithic flux tube.Comment: 12 page
The relativistic impulse approximation for the exclusive electrodisintegration of the deuteron
The electrodisintegration of the deuteron in the frame of the Bethe-Salpeter
approach with a separable kernel of the nucleon-nucleon interaction is
considered. This conception keeps the covariance of a description of the
process. A comparison of relativistic and nonrelativistic calculations is
presented. The factorization of the cross section of the reaction in the
impulse approximation is obtained by analytical calculations. It is shown that
the photon-neutron interaction plays an important role.Comment: 31 pages, 14 figures, 1 tabl
- …