29 research outputs found

    Gain and Loss of Multiple Genes During the Evolution of Helicobacter pylori

    Get PDF
    Sequence diversity and gene content distinguish most isolates of Helicobacter pylori. Even greater sequence differences differentiate distinct populations of H. pylori from different continents, but it was not clear whether these populations also differ in gene content. To address this question, we tested 56 globally representative strains of H. pylori and four strains of Helicobacter acinonychis with whole genome microarrays. Of the weighted average of 1,531 genes present in the two sequenced genomes, 25% are absent in at least one strain of H. pylori and 21% were absent or variable in H. acinonychis. We extrapolate that the core genome present in all isolates of H. pylori contains 1,111 genes. Variable genes tend to be small and possess unusual GC content; many of them have probably been imported by horizontal gene transfer. Phylogenetic trees based on the microarray data differ from those based on sequences of seven genes from the core genome. These discrepancies are due to homoplasies resulting from independent gene loss by deletion or recombination in multiple strains, which distort phylogenetic patterns. The patterns of these discrepancies versus population structure allow a reconstruction of the timing of the acquisition of variable genes within this species. Variable genes that are located within the cag pathogenicity island were apparently first acquired en bloc after speciation. In contrast, most other variable genes are of unknown function or encode restriction/modification enzymes, transposases, or outer membrane proteins. These seem to have been acquired prior to speciation of H. pylori and were subsequently lost by convergent evolution within individual strains. Thus, the use of microarrays can reveal patterns of gene gain or loss when examined within a phylogenetic context that is based on sequences of core genes

    Human Gastric Mucins Differently Regulate Helicobacter pylori Proliferation, Gene Expression and Interactions with Host Cells

    Get PDF
    Helicobacter pylori colonizes the mucus niche of the gastric mucosa and is a risk factor for gastritis, ulcers and cancer. The main components of the mucus layer are heavily glycosylated mucins, to which H. pylori can adhere. Mucin glycosylation differs between individuals and changes during disease. Here we have examined the H. pylori response to purified mucins from a range of tumor and normal human gastric tissue samples. Our results demonstrate that mucins from different individuals differ in how they modulate both proliferation and gene expression of H. pylori. The mucin effect on proliferation varied significantly between samples, and ranged from stimulatory to inhibitory, depending on the type of mucins and the ability of the mucins to bind to H. pylori. Tumor-derived mucins and mucins from the surface mucosa had potential to stimulate proliferation, while gland-derived mucins tended to inhibit proliferation and mucins from healthy uninfected individuals showed little effect. Artificial glycoconjugates containing H. pylori ligands also modulated H. pylori proliferation, albeit to a lesser degree than human mucins. Expression of genes important for the pathogenicity of H. pylori (babA, sabA, cagA, flaA and ureA) appeared co-regulated in response to mucins. The addition of mucins to co-cultures of H. pylori and gastric epithelial cells protected the viability of the cells and modulated the cytokine production in a manner that differed between individuals, was partially dependent of adhesion of H. pylori to the gastric cells, but also revealed that other mucin factors in addition to adhesion are important for H. pylori-induced host signaling. The combined data reveal host-specific effects on proliferation, gene expression and virulence of H. pylori due to the gastric mucin environment, demonstrating a dynamic interplay between the bacterium and its host

    Differential Carbohydrate Recognition by Campylobacter jejuni Strain 11168: Influences of Temperature and Growth Conditions

    Get PDF
    The pathogenic clinical strain NCTC11168 was the first Campylobacter jejuni strain to be sequenced and has been a widely used laboratory model for studying C. jejuni pathogenesis. However, continuous passaging of C. jejuni NCTC11168 has been shown to dramatically affect its colonisation potential. Glycan array analysis was performed on C. jejuni NCTC11168 using the frequently passaged, non-colonising, genome sequenced (11168-GS) and the infrequently passaged, original, virulent (11168-O) isolates grown or maintained under various conditions. Glycan structures recognised and bound by C. jejuni included terminal mannose, N-acetylneuraminic acid, galactose and fucose. Significantly, it was found that only when challenged with normal oxygen at room temperature did 11168-O consistently bind to sialic acid or terminal mannose structures, while 11168-GS bound these structures regardless of growth/maintenance conditions. Further, binding of un-capped galactose and fucosylated structures was significantly reduced when C. jejuni was maintained at 25°C under atmospheric oxygen conditions. These binding differences identified through glycan array analysis were confirmed by the ability of specific lectins to competitively inhibit the adherence of C. jejuni to a Caco-2 intestinal cell line. Our data suggests that the binding of mannose and/or N-acetylneuraminic acid may provide the initial interactions important for colonisation following environmental exposure

    The antioxidant protein alkylhydroperoxide reductase of Helicobacter pylori switches from a peroxide reductase to a molecular chaperone function

    No full text
    Helicobacter pylori, an oxygen-sensitive microaerophilic bacterium, contains many antioxidant proteins, among which alkylhydroperoxide reductase (AhpC) is the most abundant. The function of AhpC is to protect H. pylori from a hyperoxidative environment by reduction of toxic organic hydroperoxides. We have found that the sequence of AhpC from H. pylori is more homologous to mammalian peroxiredoxins than to eubacterial AhpC. We have also found that the protein structure of AhpC could shift from low-molecular-weight oligomers with peroxide-reductase activity to high-molecular-weight complexes with molecular-chaperone function under oxidative stresses. Time-course study by following the quaternary structural change of AhpC in vivo revealed that this enzyme changes from low-molecular-weight oligomers under normal microaerobic conditions or short-term oxidative shock to high-molecular-weight complexes after severe long-term oxidative stress. This study revealed that AhpC of H. pylori acts as a peroxide reductase in reducing organic hydroperoxides and as a molecular chaperone for prevention of protein misfolding under oxidative stress

    Life at the margins: Modulation of attachment proteins in Helicobacter pylori

    No full text
    Helicobacter pylori is the primary cause of peptic ulcer disease and is estimated to account for about 60% of all cases of gastric cancer, the second most common cause of cancer death worldwide. Among the H. pylori virulence factors associated with disease, in addition to the well-known cag pathogenicity island, is the BabA adhesin, an outer membrane protein that binds with high affinity to fucosylated glycans on the gastric epithelium, such as Lewis B (Leb) and related terminal fucose residues found on the blood group O (H antigen), A and B antigens. BabA-mediated attachment to the gastric mucosa promotes chronic inflammation and gastric pathology, which from the bacterial perspective carries both risks and benefits. We recently described modulation in expression of BabA and related outer membrane proteins that occurs during colonization of experimental animals.1,2 Here we put these findings into a broader context, and speculate on their implications for the host-pathogen relationship

    Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa

    No full text
    Glycoconjugates expressed on gastric mucosa play a crucial role in host–pathogen interactions. The FUT2 enzyme catalyzes the addition of terminal α(1,2)fucose residues, producing the H type 1 structure expressed on the surface of epithelial cells and in mucosal secretions of secretor individuals. Inactivating mutations in the human FUT2 gene are associated with reduced susceptibility to Helicobacter pylori infection. H. pylori infects over half the world's population and causes diverse gastric lesions, from gastritis to gastric cancer. H. pylori adhesion constitutes a crucial step in the establishment of a successful infection. The BabA adhesin binds the Leb and H type 1 structures expressed on gastric mucins, while SabA binds to sialylated carbohydrates mediating the adherence to inflamed gastric mucosa. In this study, we have used an animal model of nonsecretors, Fut2-null mice, to characterize the glycosylation profile and evaluate the effect of the observed glycan expression modifications in the process of H. pylori adhesion. We have demonstrated expression of terminal difucosylated glycan structures in C57Bl/6 mice gastric mucosa and that Fut2-null mice showed marked alteration in gastric mucosa glycosylation, characterized by diminished expression of α(1,2)fucosylated structures as indicated by lectin and antibody staining and further confirmed by mass spectrometry analysis. This altered glycosylation profile was further confirmed by the absence of Fucα(1,2)-dependent binding of calicivirus virus-like particles. Finally, using a panel of H. pylori strains, with different adhesin expression profiles, we have demonstated an impairment of BabA-dependent adhesion of H. pylori to Fut2-null mice gastric mucosa, whereas SabA-mediated binding was not affected
    corecore