40 research outputs found

    Evidence in chronic kidney disease–mineral and bone disorder guidelines: is it time to treat or time to wait?

    Get PDF
    Chronic kidney disease\u2013mineral and bone disorder (CKD\u2013MBD) is one of the many important complications associated with CKD and may at least partially explain the extremely high morbidity and mortality among CKD patients. The 2009 Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice Guideline document was based on the best information available at that time and was designed not only to provide information but also to assist in decision-making. In addition to the international KDIGO Work Group, which included worldwide experts, an independent Evidence Review Team was assembled to ensure rigorous review and grading of the existing evidence. Based on the evidence from new clinical trials, an updated Clinical Practice Guideline was published in 2017. In this review, we focus on the conceptual and practical evolution of clinical guidelines (from eMinence-based medicine to eVidence-based medicine and \u2018living\u2019 guidelines), highlight some of the current important CKD\u2013MBD-related changes, and underline the poor or extremely poor level of evidence present in those guidelines (as well as in other areas of nephrology). Finally, we emphasize the importance of individualization of treatments and shared decision-making (based on important ethical considerations and the \u2018best available evidence\u2019), which may prove useful in the face of the uncertainty over the decision whether \u2018to treat\u2019 or \u2018to wait\u2019

    A bacterial glycan core linked to surface (S)-layer proteins modulates host immunity through Th17 suppression

    Get PDF
    Tannerella forsythia is a pathogen implicated in periodontitis, an inflammatory disease of the tooth-supporting tissues often leading to tooth loss. This key periodontal pathogen is decorated with a unique glycan core O-glycosidically linked to the bacterium's proteinaceous surface (S)-layer lattice and other glycoproteins. Herein, we show that the terminal motif of this glycan core acts to modulate dendritic cell effector functions to suppress T-helper (Th)17 responses. In contrast to the wild-type bacterial strain, infection with a mutant strain lacking the complete S-layer glycan core induced robust Th17 and reduced periodontal bone loss in mice. Our findings demonstrate that surface glycosylation of this pathogen may act to ensure its persistence in the host likely through suppression of Th17 responses. In addition, our data suggest that the bacterium then induces the Toll-like receptor 2–Th2 inflammatory axis that has previously been shown to cause bone destruction. Our study provides a biological basis for pathogenesis and opens opportunities in exploiting bacterial glycans as therapeutic targets against periodontitis and a range of other infectious diseases

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≄ II, EF ≀35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    Dendritic Cells in Distinct Oral Mucosal Tissues Engage Different Mechanisms To Prime CD8(+) T Cells

    No full text
    Although oral dendritic cells (DCs) were shown to induce cell-mediated immunity, the identity and function of the various oral DC subsets involved in this process is unclear. In this study, we examined the mechanisms used by DCs of the buccal mucosa and of the lining mucosa to elicit immunity. After plasmid DNA immunization, buccally immunized mice generated robust local and systemic CD8(+) T cell responses, whereas lower responses were seen by lining immunization. A delayed Ag presentation was monitored in vivo in both groups; yet, a more efficient presentation was mediated by buccal-derived DCs. Restricting transgene expression to CD11c(+) cells resulted in diminished CD8(+) T cell responses in both oral tissues, suggesting that immune induction is mediated mainly by cross-presentation. We then identified, in addition to the previously characterized Langerhans cells (LCs) and interstitial dendritic cells (iDCs), a third DC subset expressing the CD103(+) molecule, which represents an uncharacterized subset of oral iDCs expressing the langerin receptor (Ln(+)iDCs). Using Langerin-DTR mice, we demonstrated that whereas LCs and Ln(+)iDCs were dispensable for T cell induction in lining-immunized mice, LCs were essential for optimal CD8(+) T cell priming in the buccal mucosa. Buccal LCs, however, failed to directly present Ag to CD8(+) T cells, an activity that was mediated by buccal iDCs and Ln(+)iDCs. Taken together, our findings suggest that the mechanisms engaged by oral DCs to prime T cells vary between oral mucosal tissues, thus emphasizing the complexity of the oral immune network. Furthermore, we found a novel regulatory role for buccal LCs in potentiating CD8(+) T cell responses. The Journal of Immunology, 2011, 186: 891-900
    corecore