677 research outputs found

    Identifying Nearby UHECR Accelerators using UHE (and VHE) Photons

    Full text link
    Ultra-high energy photons (UHE, E > 10^19 eV) are inevitably produced during the propagation of 10^20 eV protons in extragalactic space. Their short interaction lengths (<20 Mpc) at these energies, combined with the impressive sensitivity of the Pierre Auger Observatory detector to these particles, makes them an ideal probe of nearby ultra-high-energy cosmic ray (UHECR) sources. We here discuss the particular case of photons from a single nearby (within 30 Mpc) source in light of the possibility that such an object might be responsible for several of the UHECR events published by the Auger collaboration. We demonstrate that the photon signal accompanying a cluster of a few > 6x10^19 eV UHECRs from such a source should be detectable by Auger in the near future. The detection of these photons would also be a signature of a light composition of the UHECRs from the nearby source.Comment: 4 pages, 2 figures, accepted for publication in PR

    Apple Tree Responses to Deficit Irrigation Combined with Periodic Applications of Particle Film or Abscisic Acid

    Get PDF
    The objective of this study was to determine if the application of two antitranspirant compounds would moderate water deficit stress effects on physiological responses of “Granny Smith”, “Royal Gala” and “Golden Delicious” apple (Malus domestica Borkh.) trees on MM106 rootstock that occur during deficit irrigation. Uniform trees were grown in pots under water supply regimes of 30%, 60%, and 80% depletion of available water (DAW) before irrigation to runoff and received applications of kaolin particle film (PF) or abscisic acid (ABA) at 0, 30 and 60 days. At 120 days, genotype and deficit irrigation affected nearly all leaf traits, but antitranspirant treatment had no significant effects. As the % DAW increased, the net photosynthetic rate (Pn), transpiration rate (T), stomatal conductance, leaf water and pressure potential, variable-to-maximal chlorophyll fluorescence, leaf number, and leaf N, P and K contents were reduced. A significant genotype by deficit irrigation interaction was evident on T, water use efficiency (WUE), and leaf osmotic pressure potential. A significant deficit irrigation by antitranspirant interaction was evident on only leaf Pn, with PF and ABA reducing it at 30% DAW and only PF reducing it at 80% DAW. However, the periodic use of PF or ABA during deficit irrigation did not alleviate most physiological effects of water deficit stress due to deficit irrigation

    High lateral portal for sparing the infrapatellar fat-pad during ACL reconstruction

    Get PDF
    SummaryDuring arthroscopic ACL reconstruction, intra-articular visualization can be compromised by the interposition of the infrapatellar fat pad (IPFP) between the scope and the notch. In this technical note, we describe our technique of using lateral higher arthroscopic portal, starting arthroscopy with the resection of the ligamentum mucosum and performing the tibial tunnel in 40° of knee flexion to optimise the intra-articular view without IPFP debridement. This technique was performed in 112 consecutive arthroscopic ACL reconstructions and compared to that in the previous 112 cases in which a conventional method was used. The use of this technique was associated with a shorter operative time and no increase in the difficulty in performing associated meniscal procedures

    Free volume, molecular grains, self-organisation, and anisotropic entropy : machining materials

    Get PDF
    In this article, the relationship between molecular architecture and the formation of twist-bend phases is reviewed under the context of shape dependency. We conclude that the twist-bend phase is a universal phenomenon, which occurs in a wide variety of materials, for dimers through to main chain polymers. In the process, the chemical information on molecular design is effectively lost or irrelevant, and molecular topology takes precedence over electrostatic interactions in mesophase formation. As a consequence of this macro-scale material, engineering by shape alone becomes a possibility, potentially more phases may be realised, and entropy is anisotropic

    Measurement of the Flux of Ultrahigh Energy Cosmic Rays from Monocular Observations by the High Resolution Fly's Eye Experiment

    Get PDF
    We have measured the cosmic ray spectrum above 10^17.2 eV using the two air fluorescence detectors of the High Resolution Fly's Eye observatory operating in monocular mode. We describe the detector, photo-tube and atmospheric calibrations, as well as the analysis techniques for the two detectors. We fit the spectrum to a model consisting of galactic and extra-galactic sources.Comment: 4 pages, 4 figures. Uses 10pt.rtx, amsmath.sty, aps.rtx, revsymb.sty, revtex4.cl

    Design of ultrahigh-<em>Q</em> 1-D photonic crystal microcavities

    Get PDF

    On astrophysical solution to ultra high energy cosmic rays

    Full text link
    We argue that an astrophysical solution to UHECR problem is viable. The pectral features of extragalactic protons interacting with CMB are calculated in model-independent way. Using the power-law generation spectrum Eγg\propto E^{-\gamma_g} as the only assumption, we analyze four features of the proton spectrum: the GZK cutoff, dip, bump and the second dip. We found the dip, induced by electron-positron production on CMB, as the most robust feature, existing in energy range 1×10184×10191\times 10^{18} - 4\times 10^{19} eV. Its shape is stable relative to various phenomena included in calculations. The dip is well confirmed by observations of AGASA, HiRes, Fly's Eye and Yakutsk detectors. The best fit is reached at γg=2.7\gamma_g =2.7, with the allowed range 2.55 - 2.75. The dip is used for energy calibration of the detectors. After the energy calibration the fluxes and spectra of all three detectors agree perfectly, with discrepancy between AGASA and HiRes at E>1×1020E> 1\times 10^{20} eV being not statistically significant. The agreement of the dip with observations should be considered as confirmation of UHE proton interaction with CMB. The dip has two flattenings. The high energy flattening at E1×1019E \approx 1\times 10^{19} eV automatically explains ankle. The low-energy flattening at E1×1018E \approx 1\times 10^{18} eV provides the transition to galactic cosmic rays. This transition is studied quantitatively. The UHECR sources, AGN and GRBs, are studied in a model-dependent way, and acceleration is discussed. Based on the agreement of the dip with existing data, we make the robust prediction for the spectrum at 1×10181×10201\times 10^{18} - 1\times 10^{20} eV to be measured in the nearest future by Auger detector.Comment: Revised version as published in Phys.Rev. D47 (2006) 043005 with a small additio

    New wallaby

    Get PDF
    25 p. : ill., map ; 24 cm.Includes bibliographical references (p. 23-25)

    Summary of the Seventh Archbold Expedition to New Guinea (1964). American Museum novitates ; no. 2660

    Get PDF
    21 p. : ill., 2 maps ; 26 cm.Includes bibliographical references (p. 21)."The Seventh Archbold Expedition worked on the Huon Peninsula of Papua New Guinea from April 12 to October 22, 1964. Members of the expedition occupied several camps ranging in elevation from sea level near Finschhafen to 3500 meters on the Saruwaged Plateau. The principle objective of the expedition was to collect mammals and plants, but other kinds of material were also gathered, most notably in the areas of herpetology and entomology. The present report provides an itinerary of the expedition, together with maps and a gazetteer"--P. [1]
    corecore