821 research outputs found
Identifying Nearby UHECR Accelerators using UHE (and VHE) Photons
Ultra-high energy photons (UHE, E > 10^19 eV) are inevitably produced during
the propagation of 10^20 eV protons in extragalactic space. Their short
interaction lengths (<20 Mpc) at these energies, combined with the impressive
sensitivity of the Pierre Auger Observatory detector to these particles, makes
them an ideal probe of nearby ultra-high-energy cosmic ray (UHECR) sources. We
here discuss the particular case of photons from a single nearby (within 30
Mpc) source in light of the possibility that such an object might be
responsible for several of the UHECR events published by the Auger
collaboration. We demonstrate that the photon signal accompanying a cluster of
a few > 6x10^19 eV UHECRs from such a source should be detectable by Auger in
the near future. The detection of these photons would also be a signature of a
light composition of the UHECRs from the nearby source.Comment: 4 pages, 2 figures, accepted for publication in PR
Out-of-hours primary percutaneous coronary intervention for ST-elevation myocardial infarction is not associated with excess mortality: a study of 3347 patients treated in an integrated cardiac network
OBJECTIVES: Timely delivery of primary percutaneous coronary intervention (PPCI) is the treatment of choice for ST-segment elevation myocardial infarction (STEMI). Optimum delivery of PPCI requires an integrated network of hospitals, following a multidisciplinary, consultant-led, protocol-driven approach. We investigated whether such a strategy was effective in providing equally effective in-hospital and long-term outcomes for STEMI patients treated by PPCI within normal working hours compared with those treated out-of-hours (OOHs). DESIGN: Observational study. SETTING: Large PPCI centre in London. PARTICIPANTS: 3347 STEMI patients were treated with PPCI between 2004 and 2012. The follow-up median was 3.3 years (IQR: 1.2–4.6 years). PRIMARY AND SECONDARY OUTCOME MEASURES: The primary endpoint was long-term major adverse cardiac events (MACE) with all-cause mortality a secondary endpoint. RESULTS: Of the 3347 STEMI patients, 1299 patients (38.8%) underwent PPCI during a weekday between 08:00 and 18:00 (routine-hours group) and 2048 (61.2%) underwent PPCI on a weekday between 18:00 and 08:00 or a weekend (OOHs group). There were no differences in baseline characteristics between the two groups with comparable door-to-balloon times (in-hours (IHs) 67.8 min vs OOHs 69.6 min, p=0.709), call-to-balloon times (IHs 116.63 vs OOHs 127.15 min, p=0.60) and procedural success. In hospital mortality rates were comparable between the two groups (IHs 3.6% vs OOHs 3.2%) with timing of presentation not predictive of outcome (HR 1.25 (95% CI 0.74 to 2.11). Over the follow-up period there were no significant differences in rates of mortality (IHs 7.4% vs OFHs 7.2%, p=0.442) or MACE (IHs 15.4% vs OFHs 14.1%, p=0.192) between the two groups. After adjustment for confounding variables using multivariate analysis, timing of presentation was not an independent predictor of mortality (HR 1.04 95% CI 0.78 to 1.39). CONCLUSIONS: This large registry study demonstrates that the delivery of PPCI with a multidisciplinary, consultant-led, protocol-driven approach provides safe and effective treatment for patients regardless of the time of presentation
Free volume, molecular grains, self-organisation, and anisotropic entropy : machining materials
In this article, the relationship between molecular architecture and the formation of twist-bend phases is reviewed under the context of shape dependency. We conclude that the twist-bend phase is a universal phenomenon, which occurs in a wide variety of materials, for dimers through to main chain polymers. In the process, the chemical information on molecular design is effectively lost or irrelevant, and molecular topology takes precedence over electrostatic interactions in mesophase formation. As a consequence of this macro-scale material, engineering by shape alone becomes a possibility, potentially more phases may be realised, and entropy is anisotropic
Measurement of the Flux of Ultrahigh Energy Cosmic Rays from Monocular Observations by the High Resolution Fly's Eye Experiment
We have measured the cosmic ray spectrum above 10^17.2 eV using the two air
fluorescence detectors of the High Resolution Fly's Eye observatory operating
in monocular mode. We describe the detector, photo-tube and atmospheric
calibrations, as well as the analysis techniques for the two detectors. We fit
the spectrum to a model consisting of galactic and extra-galactic sources.Comment: 4 pages, 4 figures. Uses 10pt.rtx, amsmath.sty, aps.rtx, revsymb.sty,
revtex4.cl
Search for Point Sources of Ultra-High Energy Cosmic Rays Above 40 EeV Using a Maximum Likelihood Ratio Test
We present the results of a search for cosmic ray point sources at energies
above 40 EeV in the combined data sets recorded by the AGASA and HiRes stereo
experiments. The analysis is based on a maximum likelihood ratio test using the
probability density function for each event rather than requiring an a priori
choice of a fixed angular bin size. No statistically significant clustering of
events consistent with a point source is found.Comment: 7 pages, 7 figures. Accepted for publication in The Astrophysical
Journa
An upper limit on the electron-neutrino flux from the HiRes detector
Air-fluorescence detectors such as the High Resolution Fly's Eye (HiRes)
detector are very sensitive to upward-going, Earth-skimming ultrahigh energy
electron-neutrino-induced showers. This is due to the relatively large
interaction cross sections of these high-energy neutrinos and to the
Landau-Pomeranchuk-Migdal (LPM) effect. The LPM effect causes a significant
decrease in the cross sections for bremsstrahlung and pair production, allowing
charged-current electron-neutrino-induced showers occurring deep in the Earth's
crust to be detectable as they exit the Earth into the atmosphere. A search for
upward-going neutrino-induced showers in the HiRes-II monocular dataset has
yielded a null result. From an LPM calculation of the energy spectrum of
charged particles as a function of primary energy and depth for
electron-induced showers in rock, we calculate the shape of the resulting
profile of these showers in air. We describe a full detector Monte Carlo
simulation to determine the detector response to upward-going
electron-neutrino-induced cascades and present an upper limit on the flux of
electron-neutrinos.Comment: 13 pages, 3 figures. submitted to Astrophysical Journa
A Measurement of Time-Averaged Aerosol Optical Depth using Air-Showers Observed in Stereo by HiRes
Air fluorescence measurements of cosmic ray energy must be corrected for
attenuation of the atmosphere. In this paper we show that the air-showers
themselves can yield a measurement of the aerosol attenuation in terms of
optical depth, time-averaged over extended periods. Although the technique
lacks statistical power to make the critical hourly measurements that only
specialized active instruments can achieve, we note the technique does not
depend on absolute calibration of the detector hardware, and requires no
additional equipment beyond the fluorescence detectors that observe the air
showers. This paper describes the technique, and presents results based on
analysis of 1258 air-showers observed in stereo by the High Resolution Fly's
Eye over a four year span.Comment: 7 pages, 3 figures, accepted for publication by Astroparticle Physics
Journa
On astrophysical solution to ultra high energy cosmic rays
We argue that an astrophysical solution to UHECR problem is viable. The
pectral features of extragalactic protons interacting with CMB are calculated
in model-independent way. Using the power-law generation spectrum as the only assumption, we analyze four features of the proton
spectrum: the GZK cutoff, dip, bump and the second dip. We found the dip,
induced by electron-positron production on CMB, as the most robust feature,
existing in energy range eV. Its shape is
stable relative to various phenomena included in calculations. The dip is well
confirmed by observations of AGASA, HiRes, Fly's Eye and Yakutsk detectors. The
best fit is reached at , with the allowed range 2.55 - 2.75. The
dip is used for energy calibration of the detectors. After the energy
calibration the fluxes and spectra of all three detectors agree perfectly, with
discrepancy between AGASA and HiRes at eV being not
statistically significant. The agreement of the dip with observations should be
considered as confirmation of UHE proton interaction with CMB. The dip has two
flattenings. The high energy flattening at eV
automatically explains ankle. The low-energy flattening at eV provides the transition to galactic cosmic rays. This transition is
studied quantitatively. The UHECR sources, AGN and GRBs, are studied in a
model-dependent way, and acceleration is discussed. Based on the agreement of
the dip with existing data, we make the robust prediction for the spectrum at
eV to be measured in the nearest future by
Auger detector.Comment: Revised version as published in Phys.Rev. D47 (2006) 043005 with a
small additio
New early Triassic Lingulidae (Brachiopoda) genera and species from South China
Two new genera, Sinolingularia gen. nov. and Sinoglottidia gen. nov., together with three new species, Sinolingularia huananensis gen. et sp. nov., Sinolingularia yini gen. et sp. nov. and Sinoglottidia archboldi gen. et sp. nov., are described on the basis of a large collection of well-preserved specimens from several sections straddling the Permian - Triassic boundary in South China. <br /
- …
