96 research outputs found

    Anomalous WWγWW\gamma couplings with beam polarization at the Compact Linear Collider

    Get PDF
    We study the anomalous WWγWW\gamma couplings at the Compact Linear Collider through the processes e+e−→W+W−e^{+}e^{-}\to W^+W^-, e−e+→e−γ∗e+→e+νeW−e^{-}e^{+} \to e^{-} \gamma^{*} e^{+} \to e^{+} \nu_{e} W^- and e−e+→e−γ∗γ∗e+→e−W+W−e+e^{-}e^{+}\to e^{-} \gamma^{*} \gamma^{*} e^{+} \to e^{-} W^+ W^- e^{+} (γ∗ (\gamma^{*} is the Weizsacker-Williams photon). We give the 95\% confidence level limits for unpolarized and polarized electron (positron) beam on the anomalous couplings for various values of the integrated luminosities and center-of-mass energies. We show that the obtained limits on the anomalous couplings through these processes can highly improve the current experimental limits. In addition, our limits with beam polarization are approximately two times better than the unpolarized case.Comment: Tables and references adde

    Design and fabrication of CSWAP gate based on nano-electromechanical systems

    Get PDF
    In order to reduce undesired heat dissipation, reversible logic offers a promising solution where the erasure of information can be avoided to overcome the Landauer limit. Among the reversible logic gates, Fredkin (CSWAP) gate can be used to compute any Boolean function in a reversible manner. To realize reversible computation gates, Nano-electromechanical Systems (NEMS) offer a viable platform, since NEMS can be produced en masse using microfabrication technology and controlled electronically at high-speeds. In this work-in-progress paper, design and fabrication of a NEMS-based implementation of a CSWAP gate is presented. In the design, the binary information is stored by the buckling direction of nanomechanical beams and CSWAP operation is accomplished through a mechanism which can selectively allow/block the forces from input stages to the output stages. The gate design is realized by fabricating NEMS devices on a Silicon-on-Insulator substrate. © Springer International Publishing Switzerland 2016

    Multivariate sensor data analysis for oil refineries and multi-mode identification of system behavior in real-time

    Get PDF
    Large-scale oil refineries are equipped with mission-critical heavy machinery (boilers, engines, turbines, and so on) and are continuously monitored by thousands of sensors for process efficiency, environmental safety, and predictive maintenance purposes. However, sensors themselves are also prone to errors and failure. The quality of data received from these sensors should be verified before being used in system modeling. There is a need for reliable methods and systems that can provide data validation and reconciliation in real-time with high accuracy. In this paper, we develop a novel method for real-time data validation, gross error detection and classification over multivariate sensor data streams. The validated and high-quality data obtained from these processes is used for pattern analysis and modeling of industrial plants. We obtain sensor data from the power and petrochemical plants of an oil refinery and analyze them using various time-series modeling and data mining techniques that we integrate into a complex event processing engine. Next, we study the computational performance implications of the proposed methods and uncover regimes where they are sustainable over fast streams of sensor data. Finally, we detect shifts among steady-states of data, which represent systems' multiple operating modes and identify the time when a model reconstruction is required using DBSCAN clustering algorithm.Turkish Petroleum Refineries Inc. (TUPRAS) RD CenterPublisher versio

    Intermodal coupling as a probe for detecting nanomechanical modes

    Get PDF
    Nanoelectromechanical systems provide ultrahigh performance in sensing applications. The sensing performance and functionality can be enhanced by utilizing more than one resonance mode of a nanoelectromechanical-systems device. However, it is often challenging to measure mechanical modes at high frequencies or modes that couple weakly to output transducers. In this paper, we propose the use of intermodal coupling as a mechanism to enable the detection of such modes. To implement this method, a probe mode is continuously driven and monitored using a phase-locked loop, while an auxiliary drive signal scans for other modes. Each time the auxiliary drive signal excites the corresponding mode by matching the mechanical frequency, the effective tension within the structure increases, which in turn causes a frequency shift in the probe mode. The location and width of these frequency shifts can be used to determine the frequency and quality factor of mechanical modes indirectly. Intermodal coupling can be used as a tool to obtain the spectrum of a mechanical structure even if some of these modes cannot be detected conventionally

    De Novo Transcriptome Assembly and Comparative Analysis Elucidate Complicated Mechanism Regulating Astragalus chrysochlorus Response to Selenium Stimuli

    Get PDF
    Astragalus species are medicinal plants that are used in the world for years. Some Astragalus species are known for selenium accumulation and tolerance and one of them is Astragalus chrysochlorus, a secondary selenium accumulator. In this study, we employed Illumina deep sequencing technology for the first time to de novo assemble A. chrysochlorus transcriptome and identify the differentially expressed genes after selenate treatment. Totally, 59,656 unigenes were annotated with different databases and 53,960 unigenes were detected in NR database. Transcriptome in A. chrysochlorus is closer to Glycine max than other plant species with 43,1 percentage of similarity. Annotated unigenes were also used for gene ontology enrichment and pathway enrichment analysis. The most significant genes and pathways were ABC transporters, plant pathogen interaction, biosynthesis of secondary metabolites and carbohydrate metabolism. Our results will help to enlighten the selenium accumulation and tolerance mechanisms, respectively in plants

    Processing nested complex sequence pattern queries over event streams

    Get PDF
    Complex event processing (CEP) has become increasingly important for tracking and monitoring applications ranging from healthcare, supply chain management to surveillance. These monitoring applications submit complex event queries to track sequences of events that match a given pattern. As these systems mature the needfor increasingly complex nested sequence queries arises, while thestate-of-the-art CEP systems mostly focus on the execution of flat sequence queries only. In this paper, we now introduce an iterative execution strategy for nested CEP queries composed of sequence, negation, AND and OR operators. Lastly the promise of applying selective caching of intermediate results to optimize the execution. Our experimental study using real-world stock trades evaluates the performance of our proposed iterative execution strategy for differentquery types.HP Labs Innovation Research Program ; National Science Foundation ; TÃœBÄ°TAKpost-prin

    Processing nested complex sequence pattern queries over event streams

    Get PDF
    Complex event processing (CEP) has become increasingly important for tracking and monitoring applications ranging from healthcare, supply chain management to surveillance. These monitoring applications submit complex event queries to track sequences of events that match a given pattern. As these systems mature the needfor increasingly complex nested sequence queries arises, while thestate-of-the-art CEP systems mostly focus on the execution of flat sequence queries only. In this paper, we now introduce an iterative execution strategy for nested CEP queries composed of sequence, negation, AND and OR operators. Lastly the promise of applying selective caching of intermediate results to optimize the execution. Our experimental study using real-world stock trades evaluates the performance of our proposed iterative execution strategy for differentquery types.HP Labs Innovation Research Program ; National Science Foundation ; TÃœBÄ°TAKpost-prin

    Dimension-6 operator analysis of the CLIC sensitivity to new physics

    Get PDF
    We estimate the possible accuracies of measurements at the proposed CLICe+ e− collider of Higgs and W+W− production at centre-of-mass energies up to 3 TeV, incorporating also Higgsstrahlung projections at higher energies that had not been considered previously, and use them to explore the prospective CLIC sensitivities to decoupled new physics. We present the resulting constraints on the Wilson coefficients of dimension6 operators in a model-independent approach based on the Standard Model effective field theory (SM EFT). The higher centre-of-mass energy of CLIC, compared to other projects such as the ILC and CEPC, gives it greater sensitivity to the coefficients of some of the operators we study. We find that CLIC Higgs measurements may be sensitive to new physics scales Λ = O(10) TeV for individual operators, reduced to O(1) TeV sensitivity for a global fit marginalising over the coefficients of all contributing operators. We give some examples of the corresponding prospective constraints on specific scenarios for physics beyond the SM, including stop quarks and the dilaton/radion
    • …
    corecore